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The field of chemical dynamics seeks to understand the path to reaction. What are

the roles played by the different degrees of freedom possessed by the reactants? In

surface physics/chemistry the reaction under consideration is often unimolecular, i.e.

the adsorption of a molecule onto or its desorption from some surface. In this case the

participating degrees of freedom are the translation, vibration, and rotation of the

impinging/departing molecule. The studies described in this dissertation focus on the

rotational degrees of freedom. Using optical excitation it is possible to both prepare

an aligned ensemble of molecules and detect changes in the ensemble’s alignment

induced by scattering from the surface. From these changes information is obtained

about the nature of torques applied to a molecule along the path to reaction.

The particular system studied is a hydrogen molecule (H2) scattering from a

single crystal silicon surface oriented in the (100) direction. In contrast with the

metal surfaces typically studied in gas-surface dynamics, the silicon surface exhibits

highly directional (covalent) bonding, which may be expected to give rise to strong

coupling between the surface and an impinging molecule’s angular momentum. Our

experiment measures the likelihood of a reorienting collision, where the magnitude of

the molecule’s angular momentum is preserved but its direction changed.

An initial laser pulse transforms a beam of H2 molecules from a supersonic molec-

ular beam originating as an unaligned ensemble in the j = 1 rotational state to an

aligned ensemble the j = 3 state. The excited molecules are aligned in a plane de-

termined by the polarization of the exciting laser radiation so that ensembles can

be prepared with their bonds lying preferentially parallel (helicoptering) and perpen-

dicular (cartwheeling) to the surface plane. The rotationally excited molecules are

then allowed to scatter from the Si(100) surface, and the alignment of the scattered

j = 3 molecules is resolved by measuring modulation in the ionization yield with

the polarization of the ionizing radiation from a second laser pulse. By comparing
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the results of this procedure obtained with the ionizing laser running parallel to the

Si(100) dimers to those obtained with the laser running at 45◦, we can discriminate

between changes to alignment originating from corrugation in the molecule-surface

potential with the bond’s polar (θ) and azimuthal angle (φ) relative to the surface

normal.

The results of the experiment indicate substantial but not complete reduction

in alignment of the scattered molecules. Quantifying the alignment using the cylin-

drically symmetric component of the quadrupole moment of the ensemble’s bond

angle probability distribution, we find alignment survival ratios ranging between 50-

70%, with our measurements indicating better survival (60-70%) for the cartwheeling

molecules than the helicopters (50-60%). Futher, measurements at different azimuthal

surface orientations of the scattered alignment of molecules impinging with cartwheel-

ing alignment yield a complete determination of the scattered bond angle distribution.

The results indicate a weak corrugation in the molecule-surface potential with the

bond angle’s azimuthal coordinate.

Quantum mechanical scattering calculations performed by the author using a

model potential developed by Brenig and Pehlke [Prog. Surf. Sci., 83, 263 (2008)]

are also presented. The model is found to predict qualitatively different alignment

survivals than are observed in our measurements, though in both experiment and

theory the degree realignment is found to be substantial.
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Chapter One: Introduction

Presented in the dissertation are measurements of the alignment of H2 molecules

scattered from the Si(100) surface for multiple incident molecular alignments. The

work is organized into six chapters.

Following this brief outline, we begin in Chapter 2 with a simplified description

of our measurement so that the reader may have a firm grasp of the larger picture

as we move on to the finer details. In the remaining sections of the chapter we then

break down each of the main components of the experiment. The chapter also serves

as an introduction for our starring actors – the H2 molecule and the Si(100) surface.

To provide context and motivation for the work presented here we move on in

Chapter 3 to a survey of gas-surface dynamics, focusing primarily on the role played

by angular momentum. In Chapter 4 we treat the subject of quantum mechanical an-

gular momentum, developing concepts that will be used heavily in the interpretation

of our results.

In Chapter 5 we continue the discussion from the previous chapter, focusing on

the exhange of angular momentum between the molecule and surface. We first work

out the implications of surface symmetry on the form of the angular momentum

exchange, and then describe some quantum dynamics calculations for H2/Si(100)

system performed by the author, arriving at a prediction for the alignment of scattered

molecules under the various initial conditions studied in our experiment.

Finally in Chapter 6 we present the measurements from our experiment. These

measurements are then analyzed, yielding our main results. We close the disserta-

tion with a brief discussion of these results, along with some suggestions for further

research. A few special topics are addressed in the appendices.
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Chapter Two: Experimental

In the community of gas-surface dynamics our experiment would be classified as

“state-to-state” or “pump-probe”. These experiments seek to uncover facets of the

molecule-surface interaction that are normally obscured by the broad spread in initial

states employed and final states produced in a typical experiment. The strategy is to

prepare the system in a well defined state and to take measurements that are sensitive

to a particular final state. The results from these experiments more clearly expose

the roles played by the different degrees of freedom in the process being studied 1.

In figure 2.1 we present a simplified conceptual diagram of our measurement to

illustrate the state-to-state nature of our experiment. It is clear from the diagram

and accompanying caption that our experiment consists of four main components:

• the beam of hydrogen molecules,

• the silicon surface from which the molecules scatter,

• a pumping laser exciting the incident molecules,

• a probe laser (and detection electronics) to measure the scattered molecules.

In the following sections we describe each of these components.

2.1 The H2 Supersonic Molecular Beam

The molecules studied in our scattering experiment originate from a supersonic molec-

ular beam (SMB)[1]. An SMB is generated by a high pressure gas expanding into a

low pressure volume. During the initial phase of the expansion, molecules collide in

such a way as to produce a narrow velocity distribution peaked about the direction

of expansion. Beyond a certain radius (known as the quitting surface), intermolec-

ular collisions cease to occur, so that SMBs can propagate over long distances with

essentially zero scattering losses. The average translational energies of the molecules

1 In chapter 3 we survey a number of experiments using some combination of state preparation
and/or state detection.
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Figure 2.1: Simplified description of our experiment. The experiment begins in a)
with a beam of hydrogen (H2) molecules impinging on a silicon surface oriented in the
(100) direction. The firing of a short (5 ns) “pump” laser (b)) is timed so to intercept
the molecular beam, exciting the molecules to a higher rotational state (j = 1→ 3).
The excited molecules are represented by the blue segment in panel c). The beam
then scatters from the surface in d), at which point another short “probe” laser is
fired (e)) which is timed to overlap with the portion of the beam excited by the pump
laser. This laser selectively ionizes molecules in the higher rotational state. Finally
in f) the ionized molecules (shown in red) are collected using an electric field.
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Figure 2.2: A schematic diagram of our molecular beam source. The nozzle holds
a high pressure (4-5 bar) reservoir of H2. A spring (not shown) supplies the force
necessary to maintain a good seal between the plunger and the nozzle aperture.
A pulse of gas escapes into the vacuum from the reservoir when the magnetically
permeable plunger is briefly (≈ 1ms) retracted by pulsing current to a surrounding
coil. A skimmer is placed close (≈ 1cm) to the nozzle to separate out the molecules
traveling in the direction of the surface. A rapidly (200 Hz) rotating chopper wheel
selects out the desired segment (µs) of the beam pulse. The chopped molecular beam
then propagates into the main chamber.

are also increased above their 3
2
kT equilbrium value. For instance, using pump-probe

time of flight we measure a velocity of ≈ 2900m/s, which in turn implies a kinetic en-

ergy of 80meV, well in excess of the ≈ 40meV of kinetic energy expected for molecules

at room temperature.

A schematic of our SMB apparatus appears in figure 2.2. The nozzle2 is pulsed

for the purposes of reducing the gas load on the vacuum pumps. Most of the gas

released into the source chamber while the plunger is open does not end up in the

collimated molecular beam entering the main chamber, and acts as a large undesirable

2Miniature High Speed Vacuum Dispense Valve – Parker Fluidics
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background. The skimmer acts to shield the portion of the beam heading towards

the surface from collisions with this background, and also acts as a constriction,

preventing background from diffusing into the main chamber3.

The chopper wheel for the purposes of our experiment serves essentially as an

extra constriction to reduce the amount of contamination (primarily water) coming

from the nozzle from reaching the sample, allowing us to increase the time between

cleanings of the sample (section 2.2).

The firing of the nozzle is timed so that the desired portion of the SMB passes

through a chopper slit. The phase of the chopper wheel is monitored using a photogate

sandwiched around the edge of the wheel that activates when a slit rotates past.

Rough synchronization can be achieved by monitoring the signal at the 2 AMU peak

on a quadrupole mass spectrometer located in the main chamber on the beam axis

as the delay between the nozzle and the photogate signal is scanned.

Note however that it is not always the brightest portion of the beam which is

most desirable. In figure 2.3 we’ve sketched out a plot derived from measurements

of the density in the j = 1 and j = 3 rotational states (section 2.4) as the nozzle de-

lay is increased. Due to complex dynamics occurring in the expansion of the pulsed

beam, both profiles exhibit pronounced structure, and, moreover, the structure is

j-dependent. To determine the optimal nozzle delay, we first note that in our exper-

iment we produce aligned j = 3 molecules by optical excitation of molecules from

highly populated j = 1 level. Any initial population of the j = 3 rotational level

before the pumping stage then acts as unaligned background, degrading the signal.

It is therefore advantageous to time the chopper to select regions of SMB with lower

j = 1 density if it is accompanied by an even larger decrease in j = 3.

One can also further improve the j = 1 : j = 3 signal to background by increasing

the nozzle pressure[2]. While most molecules efficiently transfer their rotational en-

ergy into translation during the expansion, hydrogen molecules, owing to their large

rotational energy level spacing, do not. To improve the rotational cooling rate it is

necessary to increase the rate of intermolecular collisions, which is accomplished by

increasing the initial density (i.e. pressure) in the reservoir.

3 This strategy of separating the source chamber from the main (or “science”) chamber by an
intermediate volume that is actively pumped is known as differential pumping. The effectiveness
goes roughly as the ratio of the pumping speed (∼ 100l/s) to the conductance of the constriction,
which for the skimmer is on the order of .01 l/s. This allows us to maintain a base pressure in the
main chamber lower than 10−10torr during operation of the pulsed nozzle.
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Figure 2.3: Sketch of the measured density of the SMB at the j = 1 and j = 3 rota-
tional states vs. nozzle delay. The density was measured using REMPI spectroscopy,
discussed in section 2.4. The times tmax and tmin indicate the delays of maximum
j = 1 density and minimum j = 3 density respectively.

2.2 The Si(100) Surface

2.2.1 The Si(100) reconstruction

The silicon unit cell is shown in figure 2.4a. Silicon forms a diamond lattice, named

after the phase of carbon, the element appearing directly above silicon in the periodic

table. If the silicon solid is cleaved along the plane containing the (010) and (001)

directions, the Si(100) surface is formed.

By inspection of figure 2.4a, we find that in forming the surface two of the original

four bonds of each surface atom are broken. Such a scenario would be expected to

be highly reactive. To increase its stability, the surface undergoes a reconstruction

whereby the atoms assume an arrangement different from how they find themselves

in the bulk.

Specifically, atoms tilt towards one of the two equivalent nearest neighbors not

sharing the same backbone (c.f. caption of figure 2.4a, forming surface atom pairs

known as “dimers”. Atoms on the same backbone tilt in the same direction, so

that the dimers form rows (see figure 2.5a). This is known as the Si(100)–(2x1)

reconstruction, since the periodicity along a dimer row is one surface atom while the

periodicity normal to the rows is two surface atoms.

If the surface was formed instead by the plane of atoms lying just beneath the

surface (i.e. the lower backbone atoms), inspection of the bonding structure suggests
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(a) The silicon unit cell. The green and orange lines respresent the bonds broken to form the
Si(100) surface, while the green and orange petals indicate the associated dangling bonds.
The red lines indicate a single “backbone” linking together a line of surface atoms. Adapted
with permission from [3]. Copyright (1995) American Chemical Society.

that the dimer rows should run in the perpendicular direction. This prediction is con-

firmed by scanneling tunneling microscopy (figure 2.5b), which reveals the dimer row

direction rotating 90◦ at monoatomic (one atom high) step edges. The distribution

of step edges is stochastic4 so that when observed over macroscopic areas the dimers

run with equal likelihood in either direction. This gives rise to a statistical four-fold

rotational symmetry, as evidenced in the pattern produced from low-energy electron

diffraction (LEED) from the Si(100) surface (figure 2.6). We exploit this symme-

4 Though for silicon samples intentionally miscut at large (> 2◦) angles to the (100) direction
double-atomic steps prevail, resulting in “single domain” surfaces with all the dimer rows running
in the same direction. See [4] for a study the dependence of hydrogen reactivity on the azimuthal
angle of incidence on Si(100), i.e. whether the molecule impinges traveling parallel or perpendicular
to the dimer rows.
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try in the analysis of the results (chapter 6) of our scattering experiment. Detailed

discussion can be found in 5.1.

As shown in figure 2.5a, the 2x1 reconstruction still leaves each silicon atom with

an unpaired electron. It is believed that this remaining instability is alleviated by a

further reconstruction whereby the dimers buckle in an alternating fashion, resulting

in a 4x2 surface periodicity5. The buckling is expected to modify the dangling or-

bitals so that the upwards (downwards) buckling orbital is lowered (raised) in energy,

resulting in preferential occupation of the upper orbital over the lower. The chemical

rationale is that the buckling distortion brings the upper (lower) dimer atom into a

sp3(sp2) bonding geometry with its neighboring atoms, so that the dangling orbital in

the upper orbital contains more lower-energy s-like character than the lower dangling

orbital, which should be bear closer resemblance to a higher-energy p-orbital6 See

figure 2.7 for an illustration.

The buckling distortion does not modify the conclusions drawn regarding the

statistical four-fold rotational symmetry (see section 5.1). It should also be noted

that, at room temperature, the enlargement of the unit cell periodicity from (2x1)

to (4x2) is not expected to give rise to additional diffraction spots in LEED due to

the thermally driven flipping of the buckling orientation, which occurs many times

over the time scale of a LEED observation. This flipping motion, it should be noted,

exhibits long range spatial correlations [7] so that over the course a single molecular

scattering event the impinging molecule can expect to encounter an environment

closely resembling the ideal (4x2) reconstruction.

2.2.2 Preparation

High temperature annealing of the Si(100) surface has become the established method

of obtaining the ideal Si(100) reconstructed surface. In our work we follow the pre-

scriptions laid out in the popular reference by Hata et al. [8] and elaborations de-

scribed in the dissertation of Guo [9].

5 Experimental evidence for the buckling and the chemical implications are discussed in detail
in a review by Yoshinobu [6].

6 Incidentally, this respective filling/emptying of the upper/lower dangling orbitals suggests a
classification of the upper and lower atoms in a dimer as Lewis base and acid, respectively. See
Yoshinobu [6] for a thorough development of this interpretation of the Si(100) surface.
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(a) Diagram

(b) STM image

Figure 2.5: The Si(100)–(2x1) reconstruction. (a) shows a version of figure 2.4a mod-
ified to reflect the dimer-row reconstruction. The green and orange lines now denote
the dimer bonds formed by the overlap two dangling bonds from figure 2.4a, while the
petals denote the remaining dangling bond per surface atom. The dimers organize
into rows, indicated by the red lines. (b) shows a scanning-tunneling microscopy
image of the clean Si(100) surface. The dimer row structure is clearly visible, appear-
ing as lines of alternating darkness/brightness (red lines as guide). The purple lines
mark a monoatomic step edge, above which the dimer rows now run in a direction
perpendicular (lower left → upper right) to those on the lower terrace (upper left →
lower right). Figures (a) and (b) are adapted from [3] and [5] with permission from
the American Chemical Society and Taylor & Francis, respectively.

9



Figure 2.6: Low energy electron diffraction of physical Si(100) surface. The outer
diffraction spots indicate 1x1 periodicity while the inner spots indicate 2x1 period-
icity arising from the dimer-row reconstruction. The spots circled in red and purple
originate from dimer rows running in the horizontal and vertical directions respec-
tively. Note that the rightmost spot is partially obscured by the electron gun, while
the lower spot is completely obscured, though by symmetry considerations we ex-
pect their brightness to be equal to their mirror image partner. See figure 5.1 for
an explanation of the Si(100)–(4x2) unit cell diagram, shown here above and to the
right of the diffraction image for the two possible orientations. The rough equality of
brightness of 2x1 spots in the vertical and horizontal directions indicates the equal
statistical distribution of dimer row orientations along the two directions.
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Figure 2.7: The Si(100)–(4x2) buckled dimer reconstruction. Dimer bonds are indi-
cated with green-orange lines as in figure 2.5a. The buckling distortion is suspected
to drive partial transfer of charge from the lower buckling dimer atom to the upper.
As indicated in the figure, the buckling is suspected to alternate both along and
perpendicular to the dimer rows. Adapted from [7] with permission from Elsevier.
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The typical contaminants on the Si(100) surface are oxygen and carbon. The

oxygen desorbs as SiO around 1100K, though desorption at these temperatures is

suspected to leave the surface reconstruction in a disrupted state. The carbon, how-

ever, does not appear to desorb any temperatures, and the understanding is that

around 1400K is begins to dissolve into the bulk of the silicon crystal. To reverse

the deleterious effects of both contaminants it is thus found necessary to raise the

surface temperature above 1500K for short periods of time (≈ 30s) before rapidly

(≈ 5s) quenching the temperature below 1200K (taking care to remain well below

the melting temperature of 1678K). The high temperatures not only provides the

silicon atoms with the necessary mobility to anneal out the “pitting” incurred by SiO

desorption but also allows the carbon atoms to desolve into the bulk. The quenching

step should be rapid so that the carbon can not resegregate to the surface.

The most convenient method of obtaining the elevated surface temperatures is via

direct resistive heating. For our sample geometry (25mm x 10mm x .65mm, current

running parallel to the long dimension) and resistivity (≈ .015Ωcm) we found it

necessary to apply roughly 25A of current to reach the desired annealing temperature

(1500K as determined by Land Cyclops L infrared pyrometer, .83 emissivity setting).

To prevent fracture during the heating and cooling cycles we found through ex-

perience that only force should be applied to restrain the silicon sample in its holder.

We found that a coiled foil “scroll” of .004” thick tungsten suitable for this pur-

pose. See figure 2.8 for a diagram of our scroll-sample assembly holder. The different

components are as follows:

• A: Flange mounted to three axis translation stage (not shown)

• B: Stainless steel clamp

• C: Stainless steel slider

• D: Conflat power feedthrough flange

• E: Stainless steel brackets (2x)

• F: Silicon sample

• G: .004” thick tungsten scroll

12



• H: Silicon buffer slivers (top and bottom). These are included to prevent metal-

lic contamination of the silicon sample by metal. Slivers can be added as nec-

essary to tune the clamping force.

• I: Lower OFHC copper scaffolding.

• J: OFHC copper power feedthroughs (Insulator Seal Incorporated). These are

bent and inserted into the copper scaffolding and fastened to scaffolding with a

set screw.

• K: Upper OFHC copper scaffolding

• L: Ceramic shoulder washers. These are used to electrically isolate the copper

scaffolds from the chamber.

2.2.3 Characterization

To characterize the effectiveness of our cleaning procedure we rely on LEED imaging,

mentioned earlier in section 2.2.1 (see, e.g. figure 2.6). We found that Auger electron

spectroscopy is a poor measure of surface order in that it can indicate contamination

levels below our detection threshold (< 10−2) at surface conditions for which LEED

indicates poor surface order.

Shown in figure 2.9 are LEED images which we take to indicate a well ordered

reconstructed Si(100) surface.

2.3 Stimulated Raman Pumping

2.3.1 Stimulated Raman Pumping

The state preparation stage of our experiment is accomplished using the technique

of stimulated Raman pumping (SRP)[10]. Two lasers whose frequency difference is

matched to the transition frequency of two energy levels in a molecule can efficiently

drive that transition, transferring molecules from the level of higher initial population

to the lower. Classically we may think of the molecule as facilitating “mixing” between

two laser fields, producing radiation oscillating at the beat frequency. This beating

13



Figure 2.8: The silicon sample holder. See the main text for an explanation of the
labels (i.e. A,B, . . . , L). Credit to Andrea Quitugua for the illustration.
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(a) dimer parallel (b) dimer diagonal

Figure 2.9: LEED images of the well ordered Si(100) surface taken at an incident
electron energy of 47eV. The surfaces imaged in figures (a) and (b) are related to
each other by a 45◦ rotation about the surface normal, i.e. in (a) the crystal cleavage
direction (i.e. the dimer-row or (011) direction) runs vertically and in (b) it runs at
45◦ to the vertical. As expected, the surface rotation is reflected in the associated
LEED image (The arm of the electron gun is indicated by a black line for reference.)

can in turn drive vibrations or rotations in the molecule if the frequency matches a

resonance.

2.3.2 Stimulated Raman Emission

SRP can be accomplished by separately generating two lasers pulses with the appro-

priate frequency difference, and then sychronizing and aligning them so that they

illuminate the same focal region at the same time (see, e.g., [11]). In some instances,

however, one can use a trick to take a monochromatic laser beam and generate an

additional synchronized and copropagating beam detuned by the desired transition

frequency using a simple gas cell. A cell used for this purpose is known as a Raman

shifter. The trick is based on a general phenomenon known as stimulated Raman

emission (SRE), first observed in liquids but detected for the first time in gases by
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Minck et al. [12] in 19637.

The explanation of the effect is as follows. When an intense monochromatic laser

is brought to a focus inside of a gas cell, spontaneous Raman scattering is generated

over a broad range of solid angles. Some fraction of this scattered light is emitted in

the direction of laser propagation, and can then beat together with the unscattered

radiation – á la SRP – to resonantly drive further inelastic scattering. Crucially this

stimulated process is coherent in that the emitted radiation copropagates with the

original laser.

As energy builds up in the copropagating mode it can come to dominate over all

other scattering processes in winner-take-all fashion 8. As a result in an SRE spectrum

one typically finds all peaks separated by the same frequency shift corresponding to

the transition with the largest overall cross section. This is contrasted with the

spontaneous case where one usually observes multiple shifts reflecting the variety of

resonances possessed by the molecule.

SRE generated by rotational transitions in H2 were again first observed by Minck

[15] in 1966. To beat out competition with the strong vibrational transition it is

necessary to circularly polarize the incident laser radiation. At room temperature

the population of molecules in the j = 1 rotational state exceeds that of any other

state by at least a factor three, so that the S1 (j = 1 → 3) transition dominates9.

See figure 2.10 for a SRE spectra taken in our laboratory. Note that the first Stokes

line at 549nm and the Rayleigh peak at 532nm are of comparable strength, implying

signficant conversion of the incident pulse energy. We also observe a smaller longer

wavelength peak at 567nm. This peak we attribute to SRE generated by the 550nm

radiation, which is itself SRE generated by the 532nm input radiation.

7 See [13] for an entertaining early review of the subject.
8 The author in [13] likens the situation to the board game Monopoly where the player who can

acquire a small amount money early is able to dominate control the flow of money later in the game.
9 By cooling the gas to liquid nitrogen temperatures (77K) the S0 transition can be selected.

Note however that in a typical glass or steel vessel the nuclear spin flip required to convert odd
j H2 (orthohydrogen) to even (parahydrogen) occurs with very low frequency so that ortho-para
equilibriation may take a full day or even longer. It is found though that by flowing the low
temperature gas over a zeolite catalyst the equilibriation time may be reduced to a few minutes
or less depending on the state of the catalyst. In our observations of SRE from zeolite processed
hydrogen we find many instances of emission of comparable strength on the S0 and S1 Stokes lines
(as well as the anti-Stokes lines), though typically after sufficient processing the S0 process will come
to dominate.
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S1 SRE spectrum

Figure 2.10: SRE spectrum of H2 at 300K and 1 atm cell pressure. The excitation
source was a 50mJ pulse of 532nm laser radiation, approximately 5ns in duration,
obtained by frequency doubling the output of a Q-switched Nd:YAG laser. The
532nm pulse was brought from a diameter of ≈ 5mm to a shallow (f = 1m) focus in
the gas cell. The red stars indicate the location of the Rayleigh peak (532 nm) and
the expected location of the first two Stokes and first anti-Stokes lines assuming a
j = 1 → 3 transition frequency of 10B where B = 60.853cm−1 is the ground state
rotational constant as tabulated by NIST [14].
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2.3.3 Pump Laser System

A diagram of the pump laser system is shown in figure 2.11. See Siegman [16] for a

discussion of the pulsed Nd:YAG laser, and Boyd [17] for a discussion of nonlinear

frequency doubling in KDP. The polarizer (Thorlabs polarizing beam splitter) is

positioned directly behind the last focusing lens to avoid/eliminate any ellipticity

incurred as a result of internal reflections from back faces of the many (10) steering

prisms used to direct the beam into the main chamber. From the roughly 5mm beam

size and 10cm focal length focusing lens, we can antipicate a focused waist of some

tens of microns and a Rayleigh length on the order of 1cm. This estimate is consistent

with results from both time of flight measurements (section 6.1.1) and vertical scan

REMPI measurements of the profile of pumped molecule (section 2.4).

2.4 REMPI Probe

2.4.1 REMPI

In our experiment we measure ionization yields. The ionization is generated by

focusing a “probe” laser onto a region occupied by scattering molecules. The firing

of the probe laser is synchronized with the pump laser (section 2.3) so that the probe

illuminates the pumped molecules after they have scattered from the surface (i.e.

figure 2.1). Using charged “steering plates”, the ionization is directed onto the face

of charge multiplier where the current is amplified before being recorded. See figure

2.12 for an illustration of the measurement scheme.

Measuring ionization, as opposed to, say, fluorescence, has the advantage that ions

can be collected with near perfect efficiency. We utilize an ionization scheme known

as REMPI – Resonantly Enhanced Multi-Photon Ionization10. See figure 2.13 for a

conceptual diagram and the associated caption for an explanation. The technique is

state-specific in that molecules can in general be ionized out of at most one ground

electronic molecular state. With a tunable source of laser radiation it is then possible

to measure the ionization yield and thus indirectly the relative population of the

different molecular states. In a scientific sense, this feature of the resonant aspect

of REMPI is not useful for our experiment, which focuses on a single rovibrational

10 See [18] for a review of the technique
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Figure 2.11: Diagram of the SRP laser system. The 5ns long, 532nm pulse driving
the Raman shifter is generated by frequency doubling (via a KDP crystal) of 1064nm
radiation from a flash-pumped and Q-switched Nd:YAG laser (Continuum Surelite).
The firing of the Q-switch is timed relative to the nozzle trigger so that the pump laser
intercepts the molecular beam. A quarter wave plate converts the linearly polarized
output of the KDP crystal to circular, enhancing the strength of rotational scattering
in the Raman shifter. Before focusing into the main chamber, the output of the
Raman shifter is linearly polarized to establish a plane of alignment for the pumped
molecules. The plane of alignment may be rotated by rotation of the polarizer. The
polarizer and final focusing lens are mouted on a translation stage (shown in grey) so
that the location of the focus may be adjusted along the direction of molecular beam
propagation.

level. As a practical matter, however, the ability to address other rovibrational levels

is indispensable for preparations, optimizations, and diagnostics.

As explained in figure 2.13, our particular flavor of REMPI is (2+1), meaning

that the ionization process is a sequence of two-photon absorption to an intermediate

excited electronic state followed by one-photon ionization from the intermediate state.

The ionization cross section is relatively strong, so that, at our laser fluences, any

molecule excited to the intermediate state is assumed to ionize11. The two-photon

11 Though at low pulse energies it is certainly possible to incompletely ionize molecules in the
intermediate state. From a simple calculation we find the fraction f of molecules remaining in
intermediate state is given by

f =
1− e−β

β
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b
a

e

dc

Figure 2.12: Illustration of measurement scheme. The probe laser (a/purple) is
focused onto the molecules scattering from the surface (b/blue), producing photo-
electrons and ions. The postively charged ions (c/yellow) are attracted to the front
face of the negatively charged microchannel plate (MCP) (e/red). Four steering elec-
trodes (d/green) with independently variable potentials are used to guide the ions
onto the MCP. The impact of an ion on the front of the MCP initiates an electron
cascade which propagates towards the back face, producing a measurable current
pulse exiting the MCP. This current is collected by an anode (not shown), positioned
directly behind the MCP and held at a positive (50V) potential with respect to the
back face of the MCP. The anode current is further amplified and then integrated to
produce a measure of the ionization yield. Where the probe laser and ion trajectories
are obscured by the surface we have indicated by dotting the lines.

20



Figure 2.13: (2+1) REMPI ionization scheme. Of all the molecules in the ground elec-
tronic state, only one rovibrational level (labeled Initial State) is two-photon resonant
with some intermediate electronic state (Excited State). Molecules occupying other
rovibrational states (e.g. Ground State) are essentially transparent to the probe laser.
Molecules excited to the intermediate state are subsequently ionized by absorption of
one additional photon from the same laser pulse.

where β characterizes the pulse energy. The population p of molecules remaning in the intermediate
state on the other hand has the form

p ∝ β
(
1− e−β

)
so that yield unsurprisingly decreases with decreasing pulse energy.
p can be measured by measuring the ionization produced by a second strong laser pulse timed and

positioned to overlap with molecules excited by the REMPI pulse (imagine placing step e before
b in figure 2.1). This second laser pulse should have a wavelength and fluence sufficient to ionize
any molecule remaining in the intermediate state. In addition, the time interval between the initial
REMPI pulse and the second ionizing pulse should be made shorter than the radiative lifetime of
the intermediate state.
f can similarly be measured by comparing the ionization yields from the initial REMPI pulse to

the second ionizing laser pulse. For our REMPI system we find by sufficient reduction of the REMPI
pulse energy we can obtain for some transitions survival fractions f in excess of 50% at yields p
easily detectable by our ion collection electrons.

For the pump-probe scheme employed in our experimient a low pulse energy (i.e. low β) is purely
detrimental in that the ioniziation yields are low and the analysis is complicated by incompletness
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transition is then the rate limiting step, so that the expected ionization yield is

governed by the strong two-photon selection rules operative between two discrete

rovibrational states. These selection rules predict strong modulation in the ionization

yield with laser polarization for molecules with non-trivial alignment. This aspect of

REMPI spectroscopy is described in detail in section 4.7.

In the following sections we outline the relevant details regarding the structure

of the H2 energy levels (section 2.4.2) and describe our REMPI laser system (section

2.4.3).

2.4.2 The H2 molecule

The Born-Oppenheimer approximation [19] states that the molecular Hamiltonian

H (electrons + nuclei) can be partially diagonalized in a basis of states |R〉|n; R〉,
where R is a nuclear configuration and |n; R〉 is the nth lowest energy solution12 to

the electronic Hamiltonian with the nuclei fixed at R. In this basis we find that

(〈R′|〈n′; R′|)H (|R〉|n; R〉) ∝ δn′n

so that a molecule beginning in the nth electronic state remains there as time pro-

gresses. In other words the nuclear motion separates into independent motions for

each electronic index n, each with its own associated potential Vn(R).

In figure 2.14 the potential energy is plotted for the X1Σ+
g electronic state13, the

lowest (ground) level (n = 0) of diatomic hydrogen14. The potential is plotted as

a function of the H−H bond length r, the only coordinate on which the potential

of the ionization step. The ability to produce a population of electronically excited molecules is
however useful in other scenarios.

For instance, it allows for the possibility of studying scattering of electronically excited molecules
from surfaces. Preliminary measurements from our group suggest that few if any (< 0.1%) of these
“metastable” molecules survive the scattering process.

Secondly, the ease of aligning the pump (section 2.3) and probe beams, a traditionally difficult
task, is vastly improved if the SRP pump beam is used to detect “secondary ionization” from the
residual molecules left in the intermediate state by the REMPI probe. The secondary ionization
is usually detected after only modest alignment effort, after which optimizations are more or less
trivial.

12 Complications arising from degeneracy of the electronic states do not concern us here.
13 See [20] (Chapter 3) for a discussion of the electronic state symmetry labels for diatomic

molecules.
14 Data for this curve and others shown in the section were taken from [21]. Information about

the energy levels is taken from [14].
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depends. The potential is highly repulsive at short bond lengths (r < 0.5Å) due

to Coulomb repulsion of the positively charged nuclei, while at longer bond lengths

(r > 2.0Å) the potential becomes constant, as expected of two neutral atoms sepa-

rated by a long distance. In between these limits the molecule oscillates about its

stable equilibrium position at r̄o ≈ 0.74Å. For displacements close to equilibrium the

potential is roughly harmonic with a energy quantum ~ωo = 546meV, so that the

vibrational energy of the molecule is limited to discrete values εν = Eo + ~ωo
(
ν + 1

2

)
where ν = 0, 1, . . . and Eo is the potential energy at the equilibrium position r̄o. Con-

ventionally Eo is set to −1
2
~ωo so that the ground electronic state vibrational energy

εν is zero when ν = 0.

In addition to vibrational quanta, the molecule can possess rotational quanta. A

molecule with j rotational quanta, where j = 0, 1, . . . has an associated rotational

energy εj = Boj(j + 1), where Bo = 7.54meV is proportional to the inverse square of

the equilibrium bond length. In total, then, the internal energy of a ground electronic

state molecule is given by εν,j = εν + εj (see figure 2.15). Note that this expression is

only approximate and that in general we must consider, in addition to anharmonicity

in vibrational potential, coupling between the vibrational and rotational motion so

that ~ωo and Bo may each exhibit a weak dependence on both ν and j.

The discussion so far has been restricted to the ground electronic state, though it

applies just as well to higher electronic states. E,F1Σ+
g is the lowest energy two-photon

accesible state for H2.15 See figure 2.16 for the potential energy curve of this state.

The interesting double well structure, discovered by comparison of calculations with

spectroscopic observations [22], is explained as an avoided crossing between a covalent

and ionic structure with a short and long equilibrium bond length, respectively, giving

rise to a curve with an inner (E) and outer (F) well.

For our purposes it is only important to note a couple things regarding this state.

First off, the potential minima (EE, EF ) of either well is offset by ∼ 12eV from the

ground state (X1Σ+
g ) minimum. A two photon transition thus requires a photon

energy of roughly 6eV, with corresponding wavelength ( 200nm) in the near VUV

region of the electromagnetic spectrum.

15 Though there are lower lying states that are accessible by a one or three photon transition. For
a one photon transition, however, there are difficulties in generating the required short-wavelength
(∼100nm) light, and for the three photon transition there are issues with Stark shifting/broadening
at the high intensities. The two photon transition is therefore a good tradeoff.
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Figure 2.14: Potential energy for the ground state X1Σ+
g of H2 as a function of the

H−H bond length. Indicated by the notches (–) are the different vibrational energy
levels for the states with j = 0.
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Figure 2.15: Zoomed in version of figure 2.14. On this scale the rotational energy
level structure, characterized by quantum number j, can be resolved, in addition to
the higher energy scale vibrational structure, characterized by the quantum number
ν.
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E F

Figure 2.16: The E,F1Σ+
g electronic state potential curve. The vibrational energy

levels are given an E or F designation based on which well the associated wave function
primarily lies in. For energy levels higher than those indicated on the figure the
distinction becomes increasingly ambiguous.

Next we note that the low energy solutions to the vibrational wave equation are

largely confined to one well or the other, and the spacings between energy levels in

a given well are roughly evenly spaced, so that we may assign vibrational constants

~ωE, ~ωF and rotational constants BE, BF for each well. These constants for both

wells differ from their ground state counterparts. This is clear from figure 2.17, where

we find that the E and F wells not only exhibit less curvature in at their bottoms

than the ground state, but also possess longer equilibrium bond lengths. The F state

is also seen to overlap poorly with the ground state well, so that transition moments

between the two wells should be negligibly small. We expect then no coincidences in

the frequencies fν,ν′;j,j′ of any strong E,F← X transitions, since

hfν,ν′;j,j′ = ∆E + ~ωEν ′ − ~ωoν +Be (j′ (j′ + 1))−Bo (j (j + 1))

26



(where ∆E ≡ EE − Eo + 1
2
~ωE − 1

2
~ωo) will in general be unique, i.e.16

(ν1, ν
′
1, j1, j

′
1) 6= (ν2, ν

′
2, j2, j

′
2) =⇒ fν1,ν′1;j1,j′1

6= fν2,ν′2;j2,j′2

Therefore, the ionization yield for any particular resonance can be attributed to

molecules from a single ground state rovibrational level.

2.4.3 REMPI laser system

See figure 2.18 for a diagram of our REMPI laser system. The dye laser [23] is used

for its wide (∆λ ∼ 20nm) tunability, a necessity if multiple vibrational levels are to

be addressed with the same laser system (~ωE−~ωo
∆E

∼ 2% ∼ 10nm
600nm

)17. The stressed

UV fused silica (UVFS) plate exploits a near perfect coincidence of full- and half-

wave retardation at 600 and 300 nm, respectively, at a particular pressure thickness

product (see figure 2.19), where the slow axis is parallel to the direction of applied

pressure. This produces optimal phase matching conditions for subsequent BBO sum

frequency stage.

We close this section with a word of warning. At 600nm, UVFS must be placed

under considerable stress in order to exhibit significant birefrigence. This is evi-

denced in figure 2.19, where the first full wave retardation occurs only after light

propagates through a centimeter of UVFS under 200 bar of applied pressure. At

200nm, however, significant retardation occurs under only mild stress. In our obser-

vations we found that minor (< 10◦) rotations of a nylon tipped set screw securing a

UVFS steering prism to a mount were enough to produce large (> 30%) changes in

the transmission of the prism’s output through our homemade UV polarizer (figure

2.20). This is attributed to both the shorter wavelength and the close proximity of

200nm to the absorption edge of UVFS. We experienced a great deal of difficulty

eliminating anomalous polarization signals, and only succeeded after eliminating all

clamping forces on any optics transmitting 200nm. To secure optics to mounts we

opted instead for beeswax as a glue.

16 More precisely the diatomic constants differ enough that any two transitions differ by a margin
larger than the 22GHz ( .09meV) noise-broadened bandwidth of the REMPI laser.

17 The seasoned experimenter can tell whether or not their labmate is probing ground or vibra-
tionally excited hydrogen molecules by the hue of the dye laser output.
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Figure 2.17: The three electronic states participating in our (2+1) REMPI scheme.
A molecule from the ground X1Σ+

g state is excited into the ground or first vibrational
state of the E well of the E,F1Σ+

g state, where an additional photon then ionizes the
molecule, leaving it in the X2Σ+

g state.
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Figure 2.18: Diagram of our REMPI laser system. The 300mJ/5ns frequency doubled
output of a pulsed Nd:YAG laser (Quanta Ray GCR4) pumps a dye laser (Quanta
Ray PDL3) with grating tunable output wavelength, nominally 600nm. The dye laser
operates with Rhodamine 640 (Exciton) dye in methanol solution. The 50mJ/5ns
output of the dye laser is frequency doubled in a KDP crystal (Newlight Photonics),
generating 1.5mJ of 300nm second harmonic. The fundamental and second harmonic
are sent through a plate of stressed UV fused silica which acts as a half (full) wave
plate at 300nm (600nm) before mixing in a BBO crystal (Newlight Photonics) to
form 400µJ of 200nm light via sum frequency generation. The third harmonic is
separated out using a UVFS Pellin-Broca dispersing prism (Thorlabs) before being
sent through a MgF2 half wave plate (Karl Lambrecht) before being focused and sent
into the main chamber. The half wave plate and focusing lens are attached to a three
axis translation stage (indicated by the gray lines).
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Figure 2.19: Waveplate action of stressed UVFS. The 600nm fundamental and 300nm
second harmonic (see figure 2.18) exit the KDP crystal with vertical and horizontal
polarizations, respectively. The output of the BBO sum frequency stage is pro-
portional to the product of the projections of the two polarizations on the vertical
axis, which we define as the “output efficiency”. At a pressure-thickness product of
≈ 340mm · N

mm
, both harmonics exit the stressed waveplate at nearly vertical polar-

ization, as indicated by the ≈ 100% output efficiency. In our own observations we
found BBO output energy to follow roughly the same profile shown in this figure as
the stress was gradually increased. Curve produced using stress-induced birefrigence
coefficients measured by Sinha in [24].

30



Figure 2.20: Homemade stacked plate polarizer. Light is polarized by preferential
reflection of S-polarized light of the front and back faces of the eight UVFS slabs
oriented at Brewster’s angle. The slabs are restrained in their carriage slots by silicon
rubber tabs. The vertical plates are aluminum apertures which transmit the primary
beam while blocking secondary reflections. Tests confirm the expected 20:1 extinction
ratio, though losses were found to be non-negligible (≈ 40%).
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Chapter Three: Background

Our work falls under the category of gas-surface dynamics, which in turn is contained

under the larger category of reaction dynamics. The subject of reaction dynamics is

best understood by its relation to two other large branches in the field of chemistry:

energetics and kinetics.

Energetics is concerned with the thermodynamic stability of different chemical

species, i.e. for a given set of circumstances (temperature, pressure, etc.) how will

matter distribute itself if left on its own (i.e. in equilibrium)? Microscopically we

may think of equilibrium as the condition where in-fluxes are matching out-fluxes. If

we consider for instance a system containing atoms of type A and B that combine to

form molecules A2, B2, and AB then the we say the system is in equilbrium when the

reaction B2+A2 −−⇀↽−− 2 A B becomes balanced. Should the formation of two molecules

of AB require significant additional energy beyond what is already possessed by the

molecules A2 and B2, we find then by energy conservation that at low temperatures

the probability of its formation will be rare since it is unlikely that any single collision

between A2 and B2 will possess the requisite kinetic energy. This constraint does not

exist for the reverse reaction, i.e. 2 AB −−→ A2 + B2, so that, taking into account

only the product and reactant energies, we allow that any two colliding AB molecules

may react. We find then that in order to balance the rates of AB formation and

decomposition we must then have many more A2 + B2 collisions than AB + AB, or in

other words we require a much higher concentration of the former versus the latter.

Nonetheless it is found for some systems that at low temperatures a thermody-

namically unstable species can resist decomposition into its more stable configuration.

A famous example is the formation of ammonia (NH3) from nitrogen (N2) and hy-

drogen (H2), i.e. N2 + 3 H2 −−→ 2 NH3. Beginning with volume of gas in a standard

glass vessel composed of 1 part N2 and 3 parts H2 held fixed at standard temperature

(25◦C) and pressure (1 atm), thermodynamics predicts a near complete (94%)[25]

conversion to NH3 at equilibrium. In practice however no reaction is observed to

occur. To explain this apparent conflict with the laws of thermodynamics it is nec-

essary to expand our attention from solely products and reactants to intermediate

configurations along the path to reaction. In particular we note that in order to form
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NH3 it is first necessary break the existing bonds holding the H2 and N2 molecules

together. These bond energies exceed by many times ( 400x for the case of nitrogen!)

the typical excess energy kT possessed by a molecule at room temperatue. The vast

majority of intermolecular collisions are therefore unable to dissociate the molecules.

We say in these cases that there exists an energetic barrier to reaction. The study

of these barriers, their microscopic origin, and their influence on reaction rates falls

under the topic of chemical kinetics.

Demonstrating the existence of barriers, however, tells us little about how these

barriers might be overcome. The total energy possessed by a set of reactants can be

partitioned among their various degrees of freedom in an enormous number of ways,

and only a small subset of these partitionings may be effective in promoting the

reaction in question. To tackle this issue then we further expand our consideration to

the full microscopic trajectory from reactants to products. Which degrees of freedom

should be excited to most effectively promote reaction? Does motion excited in one

degree of freedom couple strongly into the others as the system progresses along the

path to reaction? These study of these and similar questions comprise the field of

reaction dynamics.

In the following chapter we look at some existing studies in reaction dynamics,

focusing primarily on gas-surface studies. Shared in common between all the exper-

iments presented is use of state preparation or state detection to gain information

regarding some particular degree of freedom. In section 3.1 we briefly introduce the

potential energy surface (PES), the central theoretical tool for the interpretation of

experimental results. Following this a pair of experiments are discussed which utilize

state preparation to illuminate the role of molecular vibration in the dissociation of

methane CH4 at a metal surface (section 3.2.2). From there we move on to section

3.3 where we begin by discussing hypotheses concerning the influence of rotational

energy on the adsorption process. A number of experimental studies are then pre-

sented which aim to test these hypotheses. Finally in section 3.4 we complete our

survey of gas-surface dynamics with the description of experiments which, like our

experiment, probe the effect of rotational alignment on molecule-surface interaction.
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3.1 The Potential Energy Surface / Polanyi Rules

Since reaction dynamics aims to study the various paths taken en route to reaction,

i.e. the time evolution of the system degrees of freedom, the starting point for the-

oretical understanding is unsurpsingly the equations of motion. In the temperature

ranges of interest the motion is presumed to be non relativistic so these equations are

Newton’s equations in a classical framework and the Schrödinger equation in a quan-

tum framework. H2 is the lightest of all molecules and so is the most “quantum”, i.e.

at a given energy it possesses the longest de Broglie wavelength λ = h√
2mE

. At room

temperature this wavelength is approximately 1Å, which is the same length scale as

the spacing between atoms on a surface. The interaction between hydrogen molecules

and a surface would then be expected to exhibit distinctly quantum effects, and in-

deed in 1930 Estermann working with Otto Stern succeeded in observing diffraction of

H2 from a freshly cleaved NaCl surface[27]. Despite the undeniably quantum mechan-

ical nature of the H2-surface interaction, many theoretical treatments avoid quantum

methods in favor of a classical approach [28]. The debate over the superiority of the

two frameworks as applied to H2-surface dynamics, safe to say, is far from settled.

No matter whether a classical or quantum framework is adopted, a potential

energy must be specified before any dynamics can be solved. The full dynamical

information of the system is encoded in the potential energy, though of course the

relation between the potential and the trajectories/wave functions the potential gives

rise to is nontrivial. Interpreting this function geometrically as specifying for each

possible set of coordinates a height above a point on high-dimensional hyperplane

corresponding to those coordinates, we obtain what is known as a potential energy

surface (PES). For a potential taking for instance only two-coordinates as input, we

can imagine point particles rolling or sliding around on the resulting PES, i.e. we can

use our physical intuition to simulate the dynamics.

The potential energy function receives as input a set coordinates describing the

geometric configuration of the particles constituting the system. In general it is nec-

essary to include the coordinates of not only the nuclei but the electrons as well.

Inclusion of the electronic motion results in a large increase in the analytic, nu-

merical, and intuitive complexity of the dynamics problem. This increase renders

quantum calculations intractable and – considering there is no acceptable classical
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theory of atomic let alone molecular electronic structure – makes classical calcuations

meaningless. Fortunately, owing to the large mass mismatch between electrons and

nuclei, the electronic motion can be “integrated out”, so that their effect is reduced

to an effective potential on the nuclei coordinates1,2. Chemical bonding is in essence

the competition between this effective potential and repulsive Coulomb interaction

between the nuclei.

For molecule-surface interactions the situation still however appears rather dire,

since we still have to handle the degrees of freedom associated with the near-infinite

numbers of surface atoms, as well as the subsurface atoms to which they are bonded,

and so on and so forth. For lighter incident molecules like H2 there is reason to claim

that the motion of the heavier surface atoms can be neglected and assumed frozen

in place. The reasoning is that the light molecules will in general have difficulty

transferring energy to the heavy surface atoms, at least in direct (i.e. single bounce)

collisions, in the same way a golf ball’s energy is largely conserved after ricochet-

ing off a paved cart path. Theoretical treatments neglecting electronic and surface

atom motion are said to be employing BOSS, the Born-Oppenheimer static surface

approximation[28]. 3

For a diatomic molecule, the remaining degrees of freedom are the three center

of mass coordinates (x, y, z), the vibrational coordinate (r), and the two rotational

coordinates (θ,φ). Adsorption and dissociation at a surface are essentially statements

about the molecular-surface distance (z) and bond length (r), respectively, and so

unsurprisingly these degrees of freedom have historically received preferential atten-

tion. Taking slices of the PES through the r − z plane in the vicinity of the surface

we obtain what are known suggestively as elbow plots. For the purposes of illustra-

tion I’ve constructed a set of three such plots, shown in figure 3.1. For all three we

find a trend of increasing equilbrium bond length with decreasing surface-molecule

distance, indicating the gradual weakening of the molecular bond and establishing of

atom-surface bonds.

From the elbow plots we can draw a number of conclusions. For the unactivated

(no barrier) process 3.1a we would expect dissociative adsorption with high probabil-

1 This technique is known as the Born-Oppenheimer approximation[19].
2 Though a rapidly growing focus in gas-surface dynamics is on “non-adiabatic” effects, i.e.

those which can not be explained within the Born-Oppenheimer approximation. See [29].
3 In section 5.5 we use BOSS to compute the evolution of the rotational alignment of H2 molecules

scattering from Si(100).
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ity over a wide range incident translational and vibrational energies since we find no

repulsive region along the reaction path. For the activated processes 3.1b and 3.1c we

are led to consider the location of the barrier. In figure 3.1b, the barrier occurs early

along the reaction path. In this region of the PES the translational and vibrational

motions are still largely decoupled, i.e. they evolve independent of one another. Vi-

brational energy in this case is expected to accomplish very little, as illustrated by the

red trajectory that scatters off the barrier and back into the gas phase. Translational

energy on the other hand gives the molecule momentum in the direction parallel to

the reaction path, resulting in efficient surmounting of the barrier, as shown with the

blue trajectory.

The barrier in 3.1c, on the other hand, occurs late along the reaction path. This

region of the PES differs from the earlier region in two main aspects. Firstly, the

reaction path now runs primarily along the bond length coordinate r. Now it is

vibrational energy which is expected to promote adsorption, as illustrated by the red

trajectory. Secondly, the reaction path exhibits curvature, so that the two degrees

of freedom no long evolve independently. As a result, energy can now be coupled

between the two coordinates, as illustrated by the blue trajectory that accumulates

vibrational energy upon scattering from barrier with curved potential contours.

These predicted correlations between translational (vibrational) efficacy and early

(late) barriers are dubbed the “Polanyi” rules after chemist John Polanyi who en-

cunciated them first in [30]. The other effect mentioned, i.e. the transfer of energy

between the translational and vibrational coordinates induced by PES curvature,

is known simply as VT coupling. For polyatomic molecules we may also similarly

consider internal vibrational redistribution (IVR), i.e. a surface-mediation interact

exchange of energy between the different modes of molecular vibration4. In the follow-

ing section we look at a couple of experiments that probe these theoretical concepts

using state prepared molecules.

3.2 Vibrational Efficacy / Bond Selectivity

As mentioned in the prevous section, of the numerous molecular degrees of freedom,

the coordinate normal to the surface z and the bond length coordinate r are intuitively

4 Coupling between translation and rotation (R–T transfer) is discussed in section 3.3.
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(a) No barrier

(b) Early barrier (c) Late barrier

Figure 3.1: Elbow plots for three different barrier configurations. The vertical and
horizontal axes correponds to the z and r coordinates respectively. Constant potential
contours are drawn in thin black lines, and the value of the potential is indicated in
grayscale shading. (a) No barrier. The blue and light green ovals denote gas-phase
and adsorbed configurations respectively, while the red circle denotes the intermediate
region. The black arrow represents a typical trajectory. Early (b) and late (c) barrier.
The green “X” denotes the barrier, while the blue and red trajectories possess high
incident translational and vibrational energy respectively.
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expected to play the largest role in surface reactions. The experiments discussed in

this section use laser to prepare beams of vibrationally excited methane isotopologues

to explore the interplay between these two degrees of freedom.

3.2.1 CH4 on Ni(111)

Using optical excitation Smith et al. [31] convert a significant fraction (10-20%)

of an incident molecular beam of CH4 into the first excited state ν3 = 1 of the

antisymmetric stretching mode. By exposing a Ni(111) surface to the molecular beam

and later measuring the carbon coverage with Auger spectroscopy[32], the sticking

probabilities of the ground ν3 = 0 and excited ν3 = 1 states are determined for a

wide range of incident translational energies (see figure 3.2). The authors find that

the increase in translational energy of vibrationally unexcited molecules necessary to

obtain sticking comparable to ν3 = 1 is 25% in excess of the ν3 vibrational quantum.

In other words, the vibrational efficacy of the ν3 mode is 125%. From this observation

the authors conclude that the vibrational energy permits molecules to access regions

of the PES with lower reaction barriers than ground vibrational state molecules.

3.2.2 CHD3 on Ni(111)

In a similar study from the same group, Killelea et al. [33] direct a beam of triply

deuterated methane (CD3H) at a Ni(111) surface. CHD3 reacts on Ni(111) by the

breaking of a C-H (or C-D) bond to form a chemisorbed CD3 (or CD2H) group as

well as a chemisorbed H (or D) atom. The ratio of C-H to C-D cleavages is then

determined via the ratio of the CD3H (mass 20) to CD4 (mass 19) desorption flux

as measured on a quadrupole mass spectrometer as the surface temperature is raised

above the threshold for associative desorption[34]. The result is shown in 3.3 a.

The authors then optically excite the C-H stretch vibrations of the incident

molecules and repeat the measurement. Subtracting out the background from the

unpumped molecules the authors arrive at 3.3 b. Within their detection limit they

observe 100% C-H:C-D bond cleave ratio for the pumped molecules. Evidentally

there is very little surface-mediated coupling between the different vibratonal modes

in CD3H at Ni(111). Any theory hoping to treat the vibrational energy during a re-
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Figure 3.2: Sticking (S0) of ground-state and vibrationalbly excited CH4 on Ni(111)
vs. incident energy Etrans. The solid and open circles denote the ν3 = 1 and ground
state sticking probabilities. The dashed and solid curves are smooth fits to the obser-
vations, and the horizontal distance between curves (45 kJ/mol) is to be compared to
the ν3 transition frequency (36 kJ/mol). From [31]. Reprinted with permission from
AAAS.

action as equilibriated at all instants among the different modes [35] could not hope

to be applicable to systems like the one studied here where IVR is so weak.

3.3 Dynamical Steering / Rotation-Translation

Transfer

Compared to the translational and vibrational molecular degrees of the freedom, the

role of a molecule’s angular momentum in the course of a chemical reaction is less

clear. Indeed, rotational motion is by its nature periodic (every 360◦ you end up

where you started!) and so its influence on the progression of a reaction is necessarily
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Figure 3.3: Measurement of bond cleavage ratios for a unpumped molecules and
b molecules laser pumped to ν = 1 C-H stretch level. Red (blue) trace monitors
desorption of CD3H (CD4), indicating C-H (C-D) bond cleavage, as the surface is
brought above the temperature threshold for associate desorption. Reprinted from
[33] with permission from AAAS.

indirect. All the same, rotational angular momentum has been shown influence a

molecule’s reactivity at surfaces. The manner in which this occurs falls into two

broad categories:

• rotation-translation (R–T) energy transfer, which acts to increase reactivity at

higher angular momenta, and

• dynamical steering, which acts to reactivity at lower angular momenta.

In sections 3.3.1 and 3.3.2 these two effects are explained, and in section 3.3.3 they

are explored through a survey of experimental results.

40



3.3.1 R–T Transfer

R–T transfer is the conversion of angular momentum to (linear) momentum along

the reaction path. Qualitatively we might then expect this effect to exert a greater

influence at higher angular momenta where this is more energy to contribute to

surmounting the barrier.

How R–T transfer might come about is best explained using a simple example.

Suppose we have a classical molecule impinging on a flat surface and rotating in the

pure helicopter orientation, i.e. ~J ∝ ~n, the surface normal. The molecule’s angular

momentum (all three components)5 is thus conserved, and influences the dynamics

of the molecule via an effective force

~Fc(r; j) =
j2

µr3
r̂

where

• j2 is the squared angular momentum,

• r is the bond length,

• µ is the reduced mass.

The “centrifugal” force Fc is always positive and acts to stretch the molecular bond.

As the molecules progresses along the path to dissociative adsorption, its bonds

weakens and must elongate to compensate Fc. The greater the angular momentum,

the greater the bond elongation and thus the greater progress towards dissocation.

Viewed from a different but equivalent perspective, the angular momentum con-

tributes to the molecular potential a term Vc obtained by integrating the centrifugal

force, i.e.

Vc(r; j) =
j2

2µr2

Now suppose the molecule’s trajectory is confined to the minimum energy path (i.e.

the evolution is “adiabatic”). The molecule’s state is then describable by a single re-

action coordinate s which measures the progress along the minimum energy path (see

5 Of course, quantum mechanically the only way to completely confine angular momentum about
a single direction is to have zero total angular momentum. We ignore this complication, taking the
scenario described here as a classical idealization, useful for illustration.
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Figure 3.4: Diagram illustrating the reaction coordinate s. The molecular surface
coordinate z and the bond length coordinate r are graphed for some interval along
a hypothetical reaction path. In the example discussed in the text we consider an
energetic barrier located early (sa) and late (sb) along the path to dissociation.

figure 3.4)[26, p.1610]. The evolution is then governed by a 1-dimensional potential

V (s; j) of the form

V (s; j) = Vo(s) + Vc(r(s); j)

where Vo(s) is the potential at zero angular momentum. Refer now to figure 3.5.

Suppose that Vo(s) contains an energetic barrier at a point sa early in the reaction

path, so that the bond length is held more or less fixed at its gas phase value. It

is seen then that angular momentum does little to facilitate dissociation, since at sa

there is no gradient in Vc about s. The picture changes however when the barrier is

located at a point sb late in the reaction path, where there is rapid variation in r with

s. In this case we find that the energy barrier is effectively reduced for molecules with

higher angular momentum j. This reduction is a manifestation of R–T coupling.

Note the assumptions that were necessary to make in order to conclude that

angular momentum can enhance the likelihood of dissociation. In reality of course

no surface is microscopically flat, so that there will in general be variation in the

molecule-surface potential with the bond’s azimuthal coordinate φ. Further, many

molecules will impinge on the surface in a cartwheeling motion with their bonds ro-

tating in and out of the surface plane6. When these factors are taken into account

6 Finally, vibrational motion does not in general evolve adiabatically so that transfer of energy
out of the rotational motion may in some cases shorten the bond length! This complication however
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s

V(s;j)

Figure 3.5: Schematic plot of the reaction path potential V (s; j) for various angular
momenta j. The dashed and dotted lines correspond to an early and late barrier,
respectively (see figure 3.4), with the dotted raised slightly above the dashed for
visibility. The height of the late barrier decreases with increasing j, indicating R–T
coupling.

matters complicate considerably so that the conclusion is far from clear. In particu-

lar, these complications suggest that the alignment of the incoming molecules could

significantly impact the extent of R–T transfer. A comparison of dissociation rates

for cartwheeling and helicoptering molecules might then be revealing.

3.3.2 Dynamical Steering

For a classical system subject to a conservative force ~F (~x) = −∇V (~x) Newton’s

equations take the form

m~̈x = m~̇v = −∇V (~x)

or for rotational motion we have, analagously

I~̇ω = −∇V (θ, φ)

is perhaps of lesser concern. Adiabaticity would be expected to apply on account of the very different
time scales for rotational and vibrational motion.
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where ω is the angular velocity. In either case we find that at each instant the system

is adjusting each velocity component to point more in the direction of decreasing

potential energy than it did the instant before. In this sense we can say that a molecule

approaching a surface is being “steered” into the configuration most favorable for

dissociation. Consider two impinging molecules A and B with equal velocity vz but

unequal angular velocities ωA < ωB
7. The approximate time interval ∆t ∼ ∆z

vz
over

which the molecule and surface interact is the same for both molecules and so then

is the resulting change ∆ω ∼ |∇V |∆t
I

in the angular velocity. We expect then the

steering effect to have a greater influence on the molecule A than molecule B, since
∆ω
ωA

> ∆ω
ωB

. See figure 3.6 for an illustration.

Underlying dynamical steering – the concept that a potential naturally acts to

reduce a particle’s potential energy – is the tacit assumption that trajectories tend to

get funnelled onto the least energy path. Were this so, we would expect decreasing

influence of alignment on dissociation probability at decreasing incident velocities, the

rough reasoning being that, given enough time, the surface can steer any molecule

into the lowest energy orientation. This is opposite to what was concluded for R–T

transfer, where enhancement of dissociation could be expected to correlate strongly

with alignment. However, the above assumption regarding the funneling of trajec-

tories is defective. In general a molecule finding itself at some moment on the least

energy path will by inertia be carried off it, i.e. one can expect overshoot. Ultimately

to determine to what extent dynamical steering is operative it is necessary to take

into account the full details of the PES.

3.3.3 Experimental Evidence of R–T Transfer and

Dynamical Steering

The two proposed rotational effects discussed above make two opposing predictions

for the dependence of sticking on the rotational angular momentum on the impinging

molecules. R–T transfer predicts an increase in dissociative adsorption with increas-

ing angular momentum, while dynamical steering predicts a decrease.

In the following we describe measurements made for the adsorption probabilities

for H2 at Pd(111), D2 at Cu(111), and our particular system of interest, i.e. H2 at

7 We ignore the linear velocity components parallel to the surface and the vectorial nature of
the angular momentum for the purposes of illustration.
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Figure 3.6: Illustration of dynamical steering. The vertical and horizontal axes corre-
spond to the molecular-surface coordinate z and bond polar coordinate θ respectively.
The thin dashed (solid) lines represent contours of constant negative (positive) po-
tential energy (in meV) taken from a potential energy surface constructed by Crespos
[36] for the H2/Pd(111) system. On top of these contours we have superimposed two
hypothetical trajectories. The red (dashed) trace represents a trajectory with low
incident angular momentum that is steering into an orientation favorable for disso-
ciation. The blue (solid) trace represents a trajectory with high incident angular
momentum that resists steering and encounters a barrier which sends the molecule
back into the gas phase. Adapted from [36] with the permission of AIP publishing.
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Si(100). For the first two systems sticking at fixed incident translational energy is

found to decrease at low angular momenta, reach a minimum, and then increase at

higher angular momenta. This dependence is explained by the activation of dynamical

steering and R–T transfer at low and high angular momenta, respectively. After

discussing these two systems we describe the H2/Si(100) results, which share many

qualitative similarities with the results of the first two systems.

3.3.3.1 H2/Pd(111)

By mixing different ratios of H2 and an inert “antiseeding” gas of N2 and using a

variable temperature nozzle, Gostein and Sitz [37] were able to generate a beam of

H2 with fixed translational energy but variable rotational distributions. Using REMPI

spectroscopy they were able to measure a j-dependent scattered flux and from a model

of rotationally inelastic scattering arrive at an estimate for the sticking probability as a

function of j. Their results are shown in figure 3.7. For all three incident energies there

is an intermediate jmin for which sticking is minimized. Further, jmin increases with

decreasing j. This is consistent with the expectated behavior of dynamical steering,

where a longer interaction time allows for steering of higher angular momentum.

3.3.3.2 D2/Cu(111)

A similar result was discovered earlier by Michelson et al. for the D2/Cu(111) system.

The Cu(111) system differs qualitatively from the Pd(111) system in that dissociation

is activated, i.e. exhibits an energetic barrier. Again using REMPI spectroscopy

they measure the desorbing D2 flux vs. j (figure 3.8a) for the different vibrational

levels ν. From the principle of detailed balance [39] the sticking probability can be

inferred. In particular the deviation from a pure Boltzmann distribution at the surface

temperature indicates a j-depedence to the sticking coefficient. Fitting the results to

a standard S-curve they arrive at figure 3.8b. Similar to Gostein and Sitz’ results on

Pd(111) we find with increasing j an initial decrease in sticking (j = 0→ 5), followed

by an increase (j = 5→ 10→ 14).

3.3.3.3 H2/Si(100)

We conclude the section with some results on H2/Si(100), our particular system of

interest. In figure 3.9 we show a reproduction of desorption measurements by Shane
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Figure 3.7: j-dependent sticking measurements by Gostein and Sitz [37] for H2 in-
cident on Pd(111). Squares, diamonds, and circles correspond to the mean incident
translational energies of 55, 73, 94 meV respectively. Reprinted from [38] with per-
mission from Elsevier.

(a) (b)

Figure 3.8: (a) j dependent measurements of the desorption flux of D2 from Cu(111).
The straight lines correspond to Boltzmann distributions at the surface temperature.
(b) Sticking probabilities obtained from desorption data via detailed balance. Both
figures reproduced from [40] with the permission of AIP Publishing.
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et al. [41]. Focusing on the ν = 0 results, we again find a similar positive curvature

to the j-dependent desorption flux (measured again with REMPI), with slope at low

j (0-3)running steeper than the corresponding Boltzmann distribution and gradually

flattening at higher j (3-5) so that the slopes become approximately equal. The

same interpretation of low j ↔ dynamical steering / high j ↔ R–T coupling is

thus applicable, though for the sake of an alternative perspective we can connect

the findings to the rotational structure of the transition state. Assuming that the

rotational motion evolves adiabatically as molecules move beyond the transition state

and into the gas phase, the steep slope at low j then implies that the spacing of

rotational levels at the transition state for those j are signficantly larger than their

gas phase spacings, or in other words that the rotational motion is hindered. For the

range of j at which the slope matches the Boltzmann prediction the molecules can

conversely be thought to be rotating more or less freely at the transition state. By

noting the rotational energy Ej = Bj(j + 1) at which this slope matching occurs we

gain a rough estimate of the corrugation in the PES with the angular coordinates θ, φ

at the transition state.

3.4 Gas-Surface Studies with Aligned Molecules

The previous section outlined the role played by the total angular momentum, repre-

sented quantum mechanically by the quantum number j in the dissociative adsorption

of diatomic molecules at surfaces. Some effects were introduced to explain how j may

influence reactivity, though for each of these effects it was also pointed out that the

molecule’s alignment, represented quantum mechanically by the quantum number m,

might also play a signficant role. A thorough explanation of quantum mechanical

alignment is given in chapter 4.

In this section we survey some existing results concerning the role of alignment

in molecule-molecule and molecule-surface interactions. The first two discussed use

laser spectroscopy to detect alignment in D2 molecules desorbing from Pd(100) [42]

and Cu(111) [43]. The measurements are then connected to the concepts of R–T

coupling dynamical steering and dynamical steering described in the previous sec-

tion. From here we review a series of experiments involving the production of aligned

molecules, beginning with an experiment measuring the survival of alignment in col-
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Figure 3.9: Measurements by Shane et al. [41] of the j-dependent flux at different
vibrational levels ν for D2 desorbing from Si(100). The straight dotted lines corre-
spond to a Boltzmann distribution at the surface temperature. Reproduced from [41]
with the permission of AIP Publishing.

lisions between N2 molecules before moving on to molecule-surface studies utilizing

aligned molecular beams. The first two of these measure the dependence of sticking

on alignment, while the third measures the effect of alignment on the scattering dis-

tribution. Through these studies the reader is hopefully convinced of the relevance

of alignment in surface chemistry.

3.4.1 Alignment in desorption from D2/Pd(100) and

D2/Cu(111)

The investigators in these experiments [42], [43] measure the alignment of desorbing

molecules in a manner more or less identical to our technique (see section 4.7). In

essence alignment is detected by measuring modulation in the molecular response

to probing laser radiation with varying laser polarization. The results are shown in

figure 3.10.

Results are stated in terms of the measured quadrupole alignment (section 4.4),

where positive and negative quadrupole alignments indicate helicoptering and cartwheel-
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(a) H2/Pd(100). Solid squares de-
note experimental values, while open
squares and diamonds denote theo-
retical predictions for the Pd(100)
and Cu(111) surfaces respectively.
The ν = 0 and ν = 1 data were ac-
quired at surface temperatures Ts =
690K and Ts = 900K respectively.

(b) H2/Cu(111). The circle and
square markers denote P and R
branch transitions respectively,
while solid and open markers denote
ν = 0 and ν = 1 respectively.

Figure 3.10: Measurement of the quadrupole alignment of desorbing D2 molecules
from (a) Pd(100) and (b) Cu(111). Reproduced from [42] and [43] with permission
from APS and AIP respectively.

ing motion respectively. The results (when combined with detailed balance) in both

cases are found to generally reinforce the interpretation put forth for the j-resolved re-

sults from the previous section. Namely, at low j, cartwheeling (i.e. end-on) molecules

are steered into the helicoptering (i.e. broadside) orientation favorable for dissocia-

tion, while, at higher j, R–T transfer preferentially enhances dissociation for incident

helicopters.

3.4.2 Survival of Alignment in N2 − N2 Collisions

Using a preparation and detection technique equivalent to our own (see sections 4.6

and 4.7), Sitz and Farrow in [44] monitored the evolution of alignment in vibrationally

excited (ν = 1) N2 molecule as they collide with each other and their unpumped
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Figure 3.11: Rotational alignment in the j = 14 rotational level vs. pressure-time
product. Markers indicate fraction of initial quadrupole alignment. The solid line
represents overall population while the dotted line represents population excess orig-
inating from the pumping process. At late times the j = 14 population is composed
largely of molecules scattering in from unpumped ν = 1 rotational levels. Reproduced
from [44] with permission from AIP.

(ν = 0) neighbors. Figure 3.11 illustrates the main findings. Vibrationally excited

molecules are prepared initially in the j = 14 rotational state and as time progresses

these molecules redistribute themselves among the ν = 1 rotational states as they

seek equilibrium. The time scale8 over which this occurs, which we will denote Teq,

was determined by the authors in a previous study[11]. What was found in [44]

was that the alignment of the vibrationally excited molecules persisted well beyond

Teq, leading the authors to conclude that rotational alignment was robust enough to

survive transfer not only away from but also back to the initially pumped state.

3.4.3 Dissociation of O2 on Si(100)

Exploiting the non-zero electronic spin of O2 in its ground electronic state, Kurahashi

and Yamauchi [45] were able to use magnetic fields to filter out the |j = 2,m = 2〉
spin-rotation state from a molecular beam, where the associated quantization axis is

controlled by varying the direction of the field at the filter exit. Note that j andm here

refer to the angular momentum vector ~J given by the sum ~K+ ~S of the rotational and

8 or, more precisely, pressure-time product
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spin angular momentum of the molecule, respectively. Because O2 possesses nearly

pure Hund’s case (b) angular momentum coupling, the rotational state of a |2, 2〉
molecule turns out to high accuracy to be a pure Y 1

1 spherical harmonic.

Using these filtered beams, the authors studied the dependence of silicon oxidation

rate on the direction of the quantization axis [46]. A sample measurement is given in

figure 3.12. Toggling the magnetic field at the filter exit between the (100) (surface

normal) and (011) (dimer parallel) directions induces large changes in sticking. From

taking measures at different incident energies and surface temperatures the authors

are able to associate the “direct”, i.e. single bounce adsorption processes with the

observed alignment sensitivity. The expected role of rotation in O2 adsorption, it

should be mentioned, differs from that for H2 due to their large disparity in mass

(16:1) and thus moment of inertia. At low 〈| ~K|2〉 the O2 bond angle is essentially

fixed over the course of a direct interaction. Rotational angular momentum is thus

expected to be relevant only so far as it determines the distribution of bond angles.

With this in mind, the authors model adsorption as a step function in the bond polar

angle θ, i.e. for some θo and ∆θ we have for the adsorption probability P (θ)

P (θ) =

1 θo −∆θ < θ < θo + ∆θ

0 else

and find their measurements consistent with a narrow ∆θ = 30◦ cone of acceptance

about θo = 90◦ (i.e. bond in-plane).

3.4.4 Methane (CH4) Dissociation on Nickel

For a diatomic molecule the direction of its single mode of vibration is constrained to

lie perpendicular to its angular momentum. For polyatomic molecules the situation

is different so that we can speak separately of rotational and vibrational alignment.

Using laser pumping, Yoder et al. [48] excite CH4 molecules to ν3 anti-symmetric

stretching mode. By varying the laser wavelength, the molecules are excited from

different ground ν = 0 vibrational state rotational levels. The different operative

selection rules for the different transitions result in differing combinations of rotational

and vibrational alignment in the excited vibrational state.

For each transition the authors measure the sensitivity of the adsorption proba-

bility to the pump laser polarization. The senstivity is quantified by the parameter
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Figure 3.12: Variation in oxidation of Si(100) with direction of incident O2
~J . Ad-

sorption probabilities are determined using a King and Wells [47] method so that
decreases in pressure correspond to increased sticking. Clear variation in pressure
with magnetic field (quantization axis) direction indicate strong dependence of stick-
ing on alignment. Reproduced from [46] with permission from APS.

∆p ≡
S‖−S⊥
S‖+S⊥

where S‖ and S⊥ is the sticking probability with the pump laser polar-

ization parallel and perpendicular to the surface normal respectively. In figure 3.13

∆p for each transition is compared to the corresponding rotational and vibrational

alignments, denoted respectively by A2
0 and βaxis, produced by the transition. It is

clear from the figure that the ∆p correlates far better with vibrational alignment than

rotational, suggesting that bringing the excited bond into a favorable geometry plays

a larger role in dissociative adsorption than does coupling of angular momentum to

the surface.

3.4.5 H2 Scattering from Cu(111) and Cu(115)

We conclude the chapter with an experiment that, like our own experiment, probes

the scattering behavior (as opposed to reactivity) of H2molecules for different inci-

dent rotational alignments, though the state preparation and detection techniques

differ greatly from ours. Similar to Kurahashi et al. [46], Godsi et al. [49] using a

hexapole magnet were able to filter out all but the |I = 1,mI = 1〉|J = 1,mJ = 1〉
spin-rotation level from a H2molecular beam, where ~I and ~J are the angular mometa

of the nuclear spin and rotation, respectively. The filtered beam is then subjected

to an electromagnet which coherently evolves the spin-rotation state. Owing to the
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Figure 3.13: Polarization sensitivity for the various transitions. For comparison, the
rotational alignment A2

0 and vibrational alignment βaxis are plotted alongside in (a)
and (b), respectively. The P(1) transition produces j = 0 (i.e. unaligned) molecules
and serves as a control. Reproduced from [48] with permission from AIP.

complexity of the mutual interaction between the different nuclear angular momenta

and the magnetic field, the precise nature of the evolution is complicated but quali-

tatively the electromagnet acts to coherently rotate the molecule’s rotational angular

momentum.

After passing through the electromagnet, the molecules are scattered off of a flat

(Cu(111)) or stepped (Cu(511)) copper surface, and the scattered flux is monitored at

the specular angle as the strength of the electromagnet and thus the incident molecule

rotational state is varied. The results are shown in figure 3.14. The detailed shape of

the curve can only be rationalized by taking into account the complete spin-rotation

Hamiltonian, and the authors choose to give context to their results by comparing

to the curve predicted from full quantum simulation of the state-preparation and

scattering stages.

However, from simple comparison of the modulation depth for the different copper

surface orientations we can conclude that scattering from the stepped surface exhibits

significantly larger sensivity to rotational alignment than the flat surface. This in turn

implies an increase in corrugation in the rotational potential at step edges, a conclu-

sion consistent with accompanying ab initio calculations that found H2 molecules can

penetrate closer to the Cu(111) surface at step edges than at terraces.
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Cu(111)

Cu(511) ∥

Cu(511) ⟂ 

Figure 3.14: Dependence of specular scattered flux on the strength of the magnetic
field B1 that rotates the incoming states. The parallel (‖) and perpendicular (⊥)
designations indicate the direction of the atomic steps with respect to the scattering
plane. Reproduced from [49].

55



Chapter Four: Alignment

In our experiment we measure the influence of molecule-surface interaction on the

alignment of the molecule’s angular momentum. This chapter, dedicated to the quan-

tum mechanical study of angular momentum and alignment, is included in order to

develop the context necessary to discuss our measurements and their interpretation.

A notoriously heiroglyphic air tends to surround the subject of quantum mechanical

angular momentum, and the aim of the chapter is to lift some of this fog by introduc-

ing some simple fundamental objects and operations and showing how larger, more

complex objects can be constructed. We introduce only the concepts necessary to

discuss our experimental results, so no attempt will be made at full completeness or

rigor. The sections of this chapter are organized as follows:

• Angular momentum eigenstates, the fundamental units of quantum mechanical

angular momentum, are introduced, and then

• we show how to combine angular momentum eigenstates into states and oper-

ators that themselves behave as angular momentum eigenstates.

• The density operator, which provides a convenient link between experiment and

theory, is motivated and then introduced, after which

• we show how the density operator permits a simple and powerful description of

alignment in terms of its multipole expansion.

• From there we define the two-photon operator, which acts to transfer molecules

between different multiplets, and describe how the action of the operator mod-

ifies the alignment of molecules.

• Finally we relate the concepts introduced in this chapter to the pumping and

probing stages of our experiment. The two stages are seen to be essentially

opposite of one another. We describe the alignment produced in the pumping

stage and derive formulas relating our probe measurements to the multipole

moments of the probed molecules.
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4.1 Angular Momentum Eigenstates

4.1.1 Angular Momentum Eigenstates

Rotational angular momentum is a vector quantity, possessing both a magnitude and

direction. Quantum mechanically an object’s angular momentum is characterized by

a pair j,m of quantum numbers, where

• j is the total angular momentum quantum number and encodes the magnitude

of the object’s angular momentum. More precisely, a state |j,m〉 with quantum

number j (the m quantum number is explained below) has a definite total

squared angular momentum so that

J2|j,m〉 = ~2j(j + 1)|j,m〉, (4.1)

where ~J is any triplet of operators (J1, J2, J3) satisfying the commutation re-

lations [Ja, Jb] = i~
∑3

i=c εabcJc, where a, b ∈ {1, 2, 3}. The vector notation ~J

is justified by the fact that from some triplet ~J we can obtain another triplet
~J ′ satisfying the commutation relations by applying a rotation matrix O, i.e.

Ji → J ′i =
∑3

j=1OijJj where O−1 = OT and det (O) = 1.

Rotational angular momentum quantum numbers, associated with the operator
~J = ~r× ~p, are constrained to non-negative integer values (j = 0, 1, 2, . . .), while

spin angular momenta can take on positive half integer (j = 1/2, 3/2, . . .) values

as well.

• m is the magnetic quantum number 1 and encodes the direction of the angular

momentum vector. States of quantum number m have definite projection of

angular momentum about some direction n̂ referred to as the quantization axis

so that for a state |j,m〉 we have

~J · n̂|j,m〉 = ~m|j,m〉, (4.2)

Once the quantization axis is selected, it is common to reorient ~J via an ap-

propriate orthogonal transformation so that n̂ is parallel to J3, along with an

establishment of coordinate axes so that J1 → Jx, J2 → Jy, J3 → Jz.

1 This terminology originates from atomic spectroscopy. Two atomic states with all but their
m quantum numbers the same will split apart in energy under application of a magnetic field.
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For a given j quantum number, the possible m quantum numbers are m =

−j,−j+ 1, . . . , j− 1, j. The fact that an object can not occupy a state with all

its angular momentum pointing in a single direction, i.e. that for all j 6= 0 we

have

〈
(
~J · n̂

)2

〉 = ~2m2 ≤ ~2j2 < ~2j(j + 1) = 〈 ~J2〉

can be viewed as a consequence of Heisenberg’s uncertainty principle.

We use the term angular momentum eigenstate to refer to states |j,m〉 of definite

j and m quantum numbers. We further require (along with an additional final re-

quirement discussed below) that the angular momentum eigenstates be normalized

so that

〈j,m|j,m〉 = 1 (4.3)

4.1.2 Angular Momentum Multiplets

It should be clarified that an arbitrary state may not possess definite angular mo-

mentum but in general lies in some superposition angular momentum states, i.e. can

be expanded in a basis of angular momentum multiplets

{ |j1,−j1〉, |j1,−j1 + 1〉, . . . |j1, j1 − 1〉 |j1, j1〉,
|j2,−j2〉, |j2,−j2 + 1〉, . . . |j2, j2 − 1〉 |j2, j2〉,

...

|jn,−jn〉, |jn,−jn + 1〉, . . . |jn, jn − 1〉 |jn, jn〉,
... }

where the n index identifies the multiplet. Two states belong in the same multiplet

if one can be reached from the other by successive application of raising (J+) or

lowering (J−) operators, where

J± ≡ Jx ± iJy

The ladder operators also serve to fix a phase ambiguity in our definition of the |j,m〉
states. Given a quantization axis n̂ and a state |j,m〉 with the properties (4.1), (4.2),

and (4.3), we can generate another state with the same properties by multiplying by

some phase factor eiδ so that |j,m〉 → eiδ|j,m〉.
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We can fix the relative phases among the different |j,m〉 states in a multiplet by

requiring

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉 (4.4)

This convention, known as the Condon-Shortley phase convention[50], has the benefit

of making all the Clebsch-Gordan coefficients (to be discussed in section 4.2) real.

Equation (4.4) together with equation (4.2) actually imply (4.1) so that we can take

equations (4.4) and (4.2) along with the normalization condition (4.3) as the definition

of the angular momentum eigenstates/multiplets |j,m〉.
Equivalently, angular momentum states can be grouped into multiplets by exam-

ining their behavior under rotations. In quantum mechanics rotations are represented

as operators D(ω), where ω ≡ (n̂, φ) is a rotation by angle φ about the axis n̂. Ro-

tation operators can be written in terms of the angular momentum operator via

D(ω) = e
~J·n̂φ
i~

The action of a rotation operator D̂(ω) on a state |jm〉 takes the following simplified

form:

D(ω)|jm〉 =

+j∑
m′=−j

Dj
m′m(ω)|jm′〉 (4.5)

where the coefficients Dj
mm′(ω) form a (2j + 1)× (2j + 1) matrix known as the (jth)

Wigner D-matrix. From equation (4.5) it can be seen that states in a multiplet have

the property of transforming into each other under rotations. We can in fact make

the stronger statement that any state in the some multiplet (i.e. in the span of some

|j,m〉, m = −j, . . . ,+j) can be transformed into any other state in the multiplet

by some appropriately weighted sum of rotation operators. In this sense states in a

multiplet are said to have definite symmetry under rotations2.

4.2 Addition of Angular Momentum

Suppose a composite system consists of two interacting subsystems, one with angular

momentum j1 with respect to its angular momentum operator ~J1 and the other with

angular momentum j2 and ~J2 with respect to its angular momentum operator ~J2.

2in mathematical terms we could say that multiplets form irreducible representations of the
rotation group
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For instance, the first angular momentum ~J1 may represent the rotational angular

momentum of a molecule, taking only integer values, while ~J2 may represent the spin

of one the molecule’s nuclei, which, depending on the nucleus, may take integer or

half integer values. We are interested in grouping states in the composite system into

multiplets with respect to the total angular momentum operator ~J1 + ~J2.3

A basis for this system can be constructed from the tensor products |j1,m1〉 ⊗
|j2,m2〉, wherem1 = −j1,−j1+1, . . . , j1−1, j1 andm2 = −j2,−j2+1, . . . , j2−1, j2.[51]

These basis vectors, however, are not in general angular momentum eigenstates with

respect to the ~J1 + ~J2 operator. The ~J1 + ~J2 angular momentum eigenstates, denoted

|j,m〉⊗ are obtained via the linear transformation

|j1,m1〉 ⊗ |j2,m2〉 → |j,m〉⊗ ≡
+j1∑

m1=−j1

+j2∑
m2=−j2

c(j1,m1; j2,m2|j,m)|j1,m1〉 ⊗ |j2,m2〉

(4.6)

where the c(j1,m1; j2,m2|j,m) are known as the Clebsch-Gordan coefficients [52].

The following are some properties of the Clebsch-Gordan coefficients that we will

use:

CG.1 c(j1,m1; j2,m2|j,m) = 0 unless j ∈ {|j1−j2|, |j1−j2|+1, . . . , j1 +j2−1, j1 +

j2}

CG.2 c(j1,m1; j2,m2|j,m) = 0 unless m = m1 +m2

CG.3 In the Condon-Shortley phase convention the c(j1,m1; j2,m2|j,m) are purely

real.

CG.4 The c(j1,m1; j2,m2|j,m) at fixed j1 and j2 comprise a unitary matrix so

that, combined with the properties CG.1 and CG.3, we get

|j1,m1〉 ⊗ |j2,m2〉 =

j1+j2∑
j=|j1−j2|

+j∑
m=−j

c(j1,m1; j2,m2|j,m)|j,m〉 (4.7)

3or, equivalently, we are interested in decomposing the system into multiplets of definite sym-
metry with respect to simultaneous rotation of the two subsystems.
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4.2.1 Applications of Addition of Angular Momentum

4.2.1.1 Outer Products |j1,m1〉〈j2,m2| and Spherical Tensors

Angular momentum addition finds application in the decomposition of operators into

spherical tensors, a concept we will use extensively in the remainder of the disserta-

tion. Consider an operator taking the form of a single outer product |j1,m1〉〈j2,m2|,
where |j1,m1〉 and |j2,m2〉 are states of definite angular momentum with respect to

the same angular momentum operator ~J .4 The outer product can also be considered

a tensor product, i.e. we have the linear correspondence

|j1,m1〉〈j2,m2| ∼= |j1,m1〉 ⊗ 〈j2,m2| (4.8)

However, the components of ~J do not satisfy the commutation relations as operators

on the bras 〈j,m|, though its negation − ~J does. As a consequence it is the states

(−1)−(j2+m2)〈j2,−m2| that possess the quantum numbers j2 and m2. After some

rearrangement we can write the tensor product in equation (4.8) so that it takes the

form that lends itself to application of equation (4.7). Explicitly

|j1,m1〉〈j2,m2| ∼= |j1,m1〉〈j2,m2|

= (−1)j2−m2|j1,m1〉 ⊗
(
(−1)−(j2−m2)〈j2,−(−m2)|

)
∼= (−1)j2−m2

j1+j2∑
k=|j1−j2|

+k∑
q=−k

c(j1,m1; j2,−m2|k, q)tkq

(4.9)

where the operators tkq are operators with definite angular momentum in that the

following relations hold:

[ ~J · n̂, tkq ] = ~qtkq (4.10)

[ ~J±, t
k
q ] = ~

√
(k ∓ q)(k ± q + 1)tkq±1 (4.11)

Tr

((
tk
′

q′

)†
tkq

)
= δk′kδq′q (4.12)

Where Tr denotes the trace operation. Note the similarity of the above with equa-

tions (4.2), (4.4), (4.3) defining the angular momentum eigenstates. The similarity is

actually a full equivalence when we recognize that

4The results (with slight modification) also apply should the |j1,m1〉 and |j2,m2〉 associate with

different angular momentum operators ~J1 and ~J2.
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• operators are themselves vectors (possessing the operations of addition and

scalar multiplication) with

• an inner product between two operators A and B given by

Tr
(
B†A

)
(4.13)

and

• an angular momentum “super-operator” (operator on operators) defined by the

prescription A→ [ ~J,A].

.

The tkq can be written in terms of the outer products |j1,m1〉〈j2,m2|:

tkq =

+j1∑
m1=−j1

+j2∑
m2=−j2

(−1)j2−m2c(j1,m1; j2,−m2|k, q)|j1,m1〉〈j2,m2|

and in fact form a basis for the |j1,m1〉〈j2,m2|.
In general, for fixed k, any collection of operators tkq where q = −k,−k+1, . . . , k−

1, k satisfying equations (4.10) and (4.11) is known as a spherical tensor of type k.

Note that property (4.12) is omitted so that a spherical tensor in general need not

be normalized.

Equivalently we could define spherical tensors as operators tkq that have the fol-

lowing behavior under an arbitrary rotation ω:

D(ω)tkqD†(ω) =
+k∑

q′=−k

D(ω)kq′qt
k
q′ (4.14)

From an angular momentum operator ~J we can obtain a spherical tensor J 1
q of

type k = 1 from the following associations:

• J0 ≡ Jz

• J±1 ≡ J±

If we multiply ~J by a matrix encoding a rotation ω, this produces a new angular mo-

mentum operator ~J ′ with a corresponding spherical tensor J ′q1 that can be expanded
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in terms of the J 1
q via

J ′1q =
+1∑

q′=−1

D1
q′q(ω)J 1

q′ = D(ω)J 1
q D†(ω)

From the above it follows that for every multiplet |j,m〉 with associated angular mo-

mentum operator ~J we obtain a multiplet |j,m〉′ with associated angular momentum

operator ~J ′ by the rule

|j,m〉′ = Dj
m′m(ω)|j,m′〉 = D(ω)|j,m〉 (4.15)

To see that the |j,m〉′ are indeed angular momentum multiplets with associated

angular momentum operator ~J ′ we note that for any m,m′, and q we have

8〈j,m′|J ′1q|j,m〉′

=〈j,m′|D†(ω)D(ω)J 1
qD†(ω)D(ω)|j,m〉

=〈j,m′|J 1
q|j,m〉

where 8〈j,m′| ≡ [|j,m′〉′]†, and the last step exploits the unitarity of the rotation

operators D(ω). Recalling then the definition of the J 1
q , we find the |j,m〉′ as de-

fined obey the three relations (4.2), (4.4), and (4.3) required of angular momentum

multiplets with associated angular momentum operator ~J ′.

4.2.1.2 Products of Spherical Tensors tkq t̃
k′

q′

The product of two spherical tensors tkq and t̃k
′

q′ also admits a spherical tensor decom-

position. That is, from the set of products tkq t̃
k′

q′ , q = −k, . . . ,+k, q′ = −k′, . . . ,+k′

we can form special combinations

[
tk t̃k

′
]k′′
q′′
≡

+k∑
q=−k

+k′∑
q′=−k′

c(k, q; k′, q′|k′′, q′′)tkq t̃k
′

q′ (4.16)

that obey the defining relation (4.14) for spherical tensors.

Conversely the product of two spherical components tkq t̃
k′

q′ can be expanded in

terms of the
[
tk t̃k

′]k′′
q′′

in a fashion analagous to (4.7):

tkq t̃
k′

q′ =
k′+k∑

k′′=|k′−k|

+k′′∑
q′′=−k′′

c(k, q; k′, q′|k′′, q′′)
[
tk t̃k

′
]k′′
q′′

(4.17)
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However, since the product of two operators is not strictly a tensor product, the[
tk t̃k

′]k′′
q′′

are not in general linearly independent, and indeed some multiplets may be

zero.

Consider as an example the case of products of Pauli spin matrices σ1, σ2, σ3. The

spin matrices together constitute a basis of a k = 1 spherical tensor, so that from

CG.1 we may expect to generate spherical tensors of type k=0, 1, and 2. However,

from the commutation and anticommutation relations

[σi, σj] = 2i
3∑

k=1

εijkσk

{σi, σj} = 2δijI

we find that products of the spin matrices lie in the span of {I, σ1, σ2, σ3}. Since I is

a spherical tensor of type k = 0, we find that the spherical tensor decomposition of a

product σiσj does not happen to contain any terms of k = 2 symmetry.

4.2.1.3 Products of Spherical Tensors and Angular Momentum

Eigenstates tkq |j,m〉

For reasons analogous to those discussed in 4.2.1.2 the states obtained by the action

tkq |j,m〉 of a spherical tensor tkq on an angular momentum multiplet |j,m〉 admit a

decomposition into “pseudo”-angular momentum eigenstates in the sense that the

states |j′,m′〉 defined by

|j′,m′〉 ≡
+k∑
q=−k

+j∑
m=−j

c(j,m; k, q|j′,m′)tkq |j,m〉 (4.18)

obey relations (4.2) and (4.4) but are not necessarily normalized and for some j′ =

|j − k|, . . . , j + k may even vanish.

4.2.1.4 Inner Products of Angular Momentum Eigenstates 〈j,m|j′,m′〉

An even stronger result can be obtained for inner products of angular momentum

eigenstates 〈j,m|j′,m′〉, again by applying the arguments of 4.2.1.2. In this case we

get schematically a decomposition similar to 4.2.1.1, i.e.5

〈j,m|j′,m′〉 =

j+j′∑
j′′=|j−j′|

+j′′∑
m′′=−j′′

(−1)j−mc(j′,m′; j,−m) [〈j|j′〉]j
′′

m′′

5roughly we flip the bras and kets in the outer product to obtain an inner product
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where the [〈j|j′〉]j
′′

m′′ obey equations (4.2) and (4.4). However, since the inner product

is invariant under rotations (i.e. D̂†(ω) = D̂−1(ω)) it should transform as an object

of type k = 0 so that

[〈j|j′〉]j
′′

m′′ ∝ δj′′0δm′′0

giving us

〈j,m|j′,m′〉 = (−1)j−mc(j′,m′; j,−m|0, 0) [〈j|j′〉]00 =
δj′jδm′m√

2j + 1
[〈j|j′〉]00

where we make use of the identity

c(j′,m′; j,−m|0, 0) = δj′jδm′m(−1)j
′−m′/

√
2j′ + 1

The result tells us that

• the inner product of two angular momentum eigenstates is zero unless they are

of identical symmetry, and that

• the inner product is independent of the magnetic quantum number m.

4.2.1.5 Wigner-Eckhart Theorem

Combining the results from sections 4.2.1.3 and 4.2.1.4 we arrive immediately at the

famous Wigner-Eckhart theorem[53] which states that, given two angular momentum

multiplets |j,m〉, |j′,m′〉 and a spherical tensor tkq , the inner product 〈j′,m′|tkq |j,m〉
takes on the specialized form

〈j′,m′|tkq |j,m〉 = c(j,m; k, q|j′,m′)〈j′||tk||j〉 (4.19)

Where m, q, and m′ range over all their possible values, and 〈j′||tk||j〉 is a pro-

portionality constant (i.e. independent of m, q, and m′) termed the reduced matrix

element.

4.2.1.6 Wigner 9j- and 6j-Symbols

To complete the discussion of addition of angular momentum we briefly introduce the

Wigner 9j- and 6j-symbols, which serve as shorthand for certain sums over products of

Clebsch-Gordan coefficients. They appear in construction of matrix elements where

65



angular momenta are being “coupled” (i.e. added) and then “recoupled” to objects

(bras, kets, operators) which may themselves be contain coupled angular momenta.

Take for instance the complicated reduced matrix element

〈c; a, b||
[
ta
′
t̃b
′
]c′
||c′′; a′′, b′′〉 (4.20)

that would appear in the application of the Wigner-Eckhart theorem (equation (4.19))

to the inner products

〈c,mc; a, b|
[
ta
′
t̃b
′
]c′
mc′
|c′′,mc′′ ; a

′, b′〉 (4.21)

where the multiplets |c,mc; a, b〉, |c′′,mc′′ ; a
′′, b′′〉 and spherical tensor

[
ta
′
t̃b
′]c′
mc′

are

each formed by coupling the angular momentum vectors ~Ja and ~Jb. By decoupling and

recoupling the angular momentum eigenstates and spherical tensors we can “separate”

the angular momenta ~Ja and ~Jb to find that

〈c; a, b||
[
ta
′
t̃b
′
]c′
||c′′; a′′, b′′〉 =

(−1)a
′′−a′−a+b′′−b′−b−(c′′−c′−c) [a, b, c′, c′′]

1/2


a a′′ a′

b b′′ b′

c c′′ c′

 〈a||ta′ ||a′′〉〈b||t̃b′||b′′〉 (4.22)

where

[x, y, . . . , z] ≡ (2x+ 1) (2y + 1) · · · (2z + 1)

and the


a a′′ a′

b b′′ b′

c c′′ c′

 are the aforementioned Wigner 9j-symbols. The symbols have

the property, one among many[54], that they vanish unless all the rows and columns

satisfy property CG.1.

The Wigner 6j-symbol

{
a b c

d e f

}
serves as shorthand for the case where one of

the entries in a 9j-symbol is zero:
a b c

0 d d

a f e

 =
(−1)a+b+d+e

[a, d]1/2

{
a b c

d e f

}
(4.23)
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4.3 Density Operator

In this section we introduce the density operator, an object closely associated with

the quantum states ψ of a system. As discussed in this section and the following one,

the density operator serves two main purposes for us:

• It aids in the statistical analysis of ensembles of molecules, whose angular mo-

menta might assume a distribution of initial directions.

• The density operator allows an intuitive and mathematically powerful descrip-

tion of an ensemble’s distribution of angular momentum in terms of its multipole

expansion.

In our experiments we perform measurements on an ensemble of molecules that

assume a classical distribution of initial quantum states. For simplicity we assume

our possible initial states form a discrete set, so that we can describe our ensembles

by specificying a pair ({|ψo〉}, P (|ψo〉)) which defines the set of possible initial states

{|ψo〉} and the fraction P (|ψo〉) of molecules in the ensemble initially occupying a

given state |ψo〉. At a later time t an initial state |ψo〉 will have evolved to the state

eH(t−to)/i~|ψo〉 ≡ U(t, to)|ψo〉 ≡ |ψ, t〉, where H is the hamiltonian, we which presume

to be identical for each molecule in the ensemble.

If at time t we measure some observable A of each molecule, then we expect on

average a result equal to the classical expectation value 〈〈A〉〉 over the distribution

P (|ψo〉) of the quantum expectation value 〈A〉(t) = 〈ψ, t|A|ψ, t〉, i.e.

〈〈A〉〉(t) =
∑
{|ψo〉}

P (|ψo〉)〈A〉(t)

From an orthonormal basis {|n〉} we can construct and insert the identity
∑

n |n〉〈n|
to obtain the following alternative expression for 〈〈A〉〉

〈〈A〉〉(t) =
∑
{|ψo〉}

P (|ψo〉)〈ψ, t|
∑
n

|n〉〈n|A|ψ, t〉

=
∑
n

〈n|A

∑
{|ψo〉}

P (|ψo〉)|ψ, t〉〈ψ, t|

 |n〉
= Tr (Aρ(t))

(4.24)
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Where

ρ(t) ≡
∑
{|ψo〉}

P (|ψo〉)|ψ, t〉〈ψ, t|

= U(t, to)

∑
{|ψo〉}

P (|ψo〉)|ψo〉〈ψo|

U †(t, to)

≡ U(t, to)ρoU
†(t, to)

(4.25)

is the density operator at a time t of an ensemble with a distribution P (|ψo〉) at a

time to.

To calculate any observable A associated with an ensemble (defined at a time to)

at some later time t it is therefore sufficient to compute the ensemble’s initial density

operator ρ(to) ≡ ρo and “propagate” the operator forward in time (i.e. ρo → ρ′ =

ρ(t)) using equation (4.25).

Note that equation (4.25) also implies that two ensembles ({|ψo〉}, P (|ψo〉)) and

({|ψo〉}′, P ′(|ψo〉)) that have the same associated initial density operators ρo ≡ ρ′o are

equivalent in that for all times they produce identical measurable predictions.

One can show that a density operator ρ at any time

• is hermitian

• has non-negative eigenvalues and

• has unit trace.

The converse is also true – for any hermitean operator ρ with non-negative eigenvalues

and unit trace we can find an ensemble ({|ψo〉}, P (|ψo〉)) so that
∑
{|ψo〉} P (|ψo〉)|ψo〉〈ψo| =

ρ. Therefore the study of ensembles of quantum mechanical states is reduced to the

study of operators ρ with the three above-mentioned properties evolving in time ac-

cording to equation (4.25).

4.4 Multipole Expansion

4.4.1 State Multipoles

For a homonuclear diatomic molecule under no external forces, a given energy level

(say the nth) is spanned by 2jn + 1 states, all with the same total angular momen-
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tum quantum number jn but different magnetic quantum numbers m = −jn,−jn +

1, . . . , jn − 1, jn.

A general basis for ρ can be constructed from all possible outer products |jn,m〉〈jn′ ,m′|,
i.e. for any ρ there are coefficients ρnm,n′m′ such that

ρ =
∑
n,n′

+jn∑
m=−jn

+jn′∑
m′=−jn′

ρnm,n′m′|jn,m〉〈jn′ ,m′|

At all stages of our experiment, however, we can neglect the possibility of coherences,

i.e. any nonzero amplitudes ρnm,n′m′ for n 6= n′. 6

Our ensemble before and after each stage can be represented as a sum
∑

n ρn of

angular momentum density multiplets, where7

ρn =

+jn∑
m,m′=−jn

|jn,m〉〈jn,m′| (4.26)

Instead of expanding ρ in the |m〉〈m′| outer product basis as we’ve done in equation

(4.26), it is often more useful to expand ρo in its spherical tensor basis (section

4.2.1.1), i.e. in terms of operators T kq defined according to

T kq ≡
+j∑

m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k, q)|m〉〈m′| (4.27)

(c.f. equation (4.9)). These spherical tensors, forming a basis for some density oper-

ator multiplet, are termed state multipoles (or just multipoles for short).

The coefficients ρkq of ρ expanded in the T kq basis are known as the multipole

moments and are expressed in terms of the ρmm′ by

ρkq =

+j∑
m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k, q)ρmm′ (4.28)

The coefficients are not all independent. The hermiticity of the density multiplet

imposes the following constraint:

ρk−q = (−1)qρkq
∗ (4.29)

6The justification for this neglect for each stage are discussed in section A.
7For the remainder of the section we will take ρ to be some particular multiplet ρn, i.e. for

compactness we suppress the (fixed) n and j indices as necessary.
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4.4.2 Multipoles Under Coordinate Transformations

Next we consider the transformation of the state multipoles and associated moments

under a change of coordinates. Consider a density multiplet ρ associated with an

angular momentum multiplet |j,m〉, itself with an associated angular momentum

vector ~J . As discussed, we can associate with the multiplet some mulitpoles T kq and

moments ρkq . If we transform ~J → ~J ′ via some rotation ω, then ρ is also a density

multiplet for the angular momentum multiplet |j,m〉′ ≡ D(ω)|j,m〉 (see end of section

4.2.1.1) since the mulitplets span the same space. The associated multipoles T ′kq and

moments ρ′kq however will differ from their unrotated counterparts T kq and ρkq . As

spherical tensors the two sets of multipoles are related via equation (4.15) so that

T ′kq =
+k∑

q′=−k

Dk
q′q(ω)T kq (4.30)

and the moments are likewise related via

ρ′kq =
+k∑

q′=−k

Dk
q′q(ω)∗ρkq′ (4.31)

4.4.3 Cartesian Multipoles

In discussing the transformation of density multiplets induced by surface scattering

it will be helpful to expand our density multiplets in a basis slightly modified from

the state multipoles we have been discussing throughout this section.

This modified basis will be composed of operators denoted by T kq
± and are termed

“cartesian multipoles”. They are defined in terms of the state multipoles T kq by the

following formulas:

T kq
+ ≡

(
T k−q + (−1)qT k+q

)
·

1
2

q = 0

1√
2

q 6= 0
(4.32)

and

T kq
− ≡ i

(
T k−q − (−1)qT k+q

)1
2

q = 0

1√
2

q 6= 0
(4.33)

where q = 0, 1, . . . , k. Note that T k0
− = 0 vanishes for all k and thus does not

constitute a basis operator.
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The corresponding moments are given by:

ρkq
+ = (−1)qRe

(
ρkq
)1 q = 0
√

2 q 6= 0
(4.34)

and

ρkq
− = −(−1)qIm

(
ρkq
)1 q = 0
√

2 q 6= 0
(4.35)

The cartesian multipoles are to state multipoles what the real spherical harmonics

(e.g. x
r
, y
r
, z
r

for l = 1) are to the (complex) spherical harmonics (e.g. sin θe+iφ, sin θe−iφ, cos θ

for l = 1), in that both have the virtue of transforming into themselves under the

reflections x→ −x and y → −y.

4.4.4 Bond Angle Probability Distribution

As an example, suppose, as is the case for our system, that the angular momen-

tum eigenstates |jm〉 are spherical harmonics Y m
j (θ, φ), so that a molecule in a state

|j,m〉 has a probability |Y m
j (θ, φ)|2dΩ of having its bond measured to lie in an in-

finitessimal patch of solid angle dΩ about the spherical coordinates θ, φ. In this case

the ensemble expectation value of the projection |θ, φ〉〈θ, φ|, i.e. Tr (|θ, φ〉〈θ, φ|ρ) =

〈θ, φ|ρ|θ, φ〉 ≡ P (θ, φ) represents the ensemble’s bond angle probability distribution,

and can be written in terms of the multipole moments as

P (θ, φ) =
(−1)j(2j + 1)√

4π

2j∑
k=0

c (j, 0; j, 0|k, 0)√
2k + 1

+k∑
q=−k

ρkqY
q
k (θ, φ) (4.36)

so that ρkq is a direct measure of the weight of the (k, q)th term in the multipole

expansion of the ensemble’s bond angle probability distribution. In terms of the

cartesian moments ρkq
± we have

P (θ, φ) =
(−1)j(2j + 1)√

4π

2j∑
k=0

c (j, 0; j, 0|k, 0)√
2k + 1

+k∑
q=0

(2− δq0) Re
(
ρkqY

q
k (θ, φ)

)
=

(−1)j(2j + 1)√
4π

2j∑
k=0

c (j, 0; j, 0|k, 0)√
2k + 1

·
+k∑
q=0

√
2− δq0(−1)qY q

k (θ, 0)
(
ρkq

+ cosmφ+ ρkq
− sinmφ

)
(4.37)
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(a) P (θ, φ) ∝ 1

(b) P (θ, φ) ∝ sin2 θ. The arrow lies perpendicular to the surface.

(c) P (θ, φ) ∝ 1− sin2 θ cos2 φ. The arrow lies parallel to the surface.

Figure 4.1: Bond angle probability distribution plots. The distance of the surface
from the origin at some direction θ, φ is proportional to the probability P (θ, φ) of
measuring the molecule’s bond to lie in that direction, where θ is angle made between
the bond and the surface normal.
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Consider for illustration a few example bond angle probability distributions and

their associated density operators. Refer to figure 4.1. A totally uniform (i.e.

isotropic) distribution of bond angles (figure 4.1a) is proportional to Y 0
0 (θ, φ), so

that the associated density operator will contain only a monopole (i.e. T 0
0 ) term in

its multipole expansion so that ρkq ∝ δk0δq0.

Take next the non-trivial bond-axis probability distribution P (θ, φ) ∝ sin2 θ (fig-

ure 4.1b). If we assign z-axis (i.e. θ = 0) to be the surface normal, such an ensemble

would then represent helicoptering molecules, with their bonds lying primarily paral-

lel to the surface. This bond-axis distribution can be expanded in spherical harmonics

as P (θ, φ) ∝ Y 0
0 (θ, φ) − 1√

5
Y 2

0 (θ, φ), which according to equation (4.36) means that

the density operator contains, in addition to some monopole ρ0
0 term, a positive

quadrupole alignment parameter ρ2
0.

Finally, imagine we gradually rotate this ensemble about some axis lying on

the surface, so that as the angle moves from 0◦ → 90◦ we convert our helicopter-

ing molecules into cartwheels (figure 4.1c). Using equation (4.14) we find that the

quadrupole moment term ρ′20 of the rotated ensembles varies with the rotation angle α

as 1
2

(3 cos2 α− 1), so that the full cartwheels also have a non-trivial quadrupole align-

ment parameter ρ′20 = −1
2
ρ2

0 that is opposite in sign from the helicoptering molecules

(i.e. negative).

The above examples use multipoles of order k = 2 and lower. In general we can

further narrow the bond angle distribution by superimposing higher order multipoles,

though for any given multiplet of angular momentum j we are limited to multipoles of

order k = 2j and lower. This limitation is yet another manifestation of the Heisenberg

uncertainty principle, this time imposing a lower limit on the product of the spread

in angular momenta ∆j and the spread in bond angles ∆θ.

4.5 Two Photon Operator

In the absence of any external fields, an ensemble of molecules will tend to distribute

themselves so that each multiplet ρn is rotationally symmetric, i.e. proportional to

monopole T 0
0 . This is a consequence of the underlying rotational symmetry of the

field free Hamiltonian, which gives rise to degeneracy among the different m sublevels

in a multiplet, which in turn results in identical Boltzmann factors e−Ej,m/kT .
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In order to obtain our desired alignment of incident molecules it is thus necessary

to break the rotational symmetry of the system’s Hamiltonian. We accomplish this

by exciting the molecules with laser radiation. The symmetry is broken by the po-

larization of the laser, so that different directions in space are distinguished by the

angle they make with the polarization vector, which is linear (i.e. no ellipticity) for

all cases in our experiment.

Note: In discussing the effect of laser radiation on the molecular ensemble (i.e.

the density operator ρ) we will offer only rough explanations regarding the exchange of

energy between molecules and the laser radiation (i.e. the laser-molecule dynamics)

and instead focus on how they exchange angular momentum (i.e. their kinematics).

We begin by selecting our quantization axis to be parallel with the laser polar-

ization. In this case the effect of the absorption or stimulated emission of a laser

photon, to first order in the laser’s electric field strength, is characterized by a spher-

ical tensor d1
0 called the one-photon operator, so that the laser pulse sends a state

|ψ〉 → |ψ〉′ = d1
0|ψ〉.

However, if the energies of the laser photons are out of resonance with every

transition out of the initially populated states (i.e. with every accessible transitions)

then the effect of the one-photon operator on the ensemble will be negligible. We

are then led to consider second-order effects which we identify with the simultaneous

absorption/stimulated emission of two photons. These effects become considerable

when the sums and difference of the laser photon energies resonate with an accessible

transition. We associate with such processes the two-photon operator d2
0, which can

be written as a special product of two one-photon operators:

d2
0 = d1

0a
0
0d

1
0 (4.38)

where a0
0 is a rotationally symmetric operator representing the intermediate states

visited in the two-photon process.

The notation d2
0 does not appear to be justified since from section 4.2.1.2 we might

expect the product in equation (4.38) to decompose into spherical tensors of not only

type k = 2 but type k = 0 as well8. Indeed for transitions between multiplets of equal

j quantum numbers (i.e. Q-branch transitions) this is in general true. However for all

the other branches (∆j = ±1,±2) the k = 0 component of the two-photon-operator

necessarily vanishes.

8k = 1 is excluded since c(1, 0; 1, 0; 1, 0) = 0.
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To see this, we note that, since we presume two-photon process to be resonant with

only one accessible transition, it should act only to send states from some initially

occupied (i.e. ground-state) multiplet |j,m〉 to some other presumably unoccupied

(i.e. excited) |j̃, m̃〉 and vice versa. In other words the two-photon operator can

be expressed in terms of outer products |j,m〉〈j̃, m̃| and |j̃, m̃〉〈j,m|. From section

4.2.1.1 it then follows that only terms with k = |j̃ − j|, . . . , j̃ + j can appear in the

its spherical tensor decomposition. Since by assumption |j̃ − j| 6= 0 we find that the

two-photon operator d2
0 cannot contain a k = 0 component and so must therefore be

a pure k = 2, q = 0 spherical tensor.

As d2
0 describes the action of the laser on the states of our system, the correspond-

ing action on the density operator ρ is given by

ρ→ ρ̃ = d2
0ρd

2
0 (4.39)

(c.f. equation (4.25)). We can assume for simplicity that ρ for simplicity contains only

terms from the ground state multiplet since any other intially occupied multiplets are

annihilated by d2
0. To determine the multipole moments ρ̃k̃q̃ of the excited multiplet

following laser excitation we take the inner product of ρ with the k̃, q̃ state multipole

(equation (4.27)) of the excited multiplet (denoted T̃ k̃q̃ ), where the inner product is

meant in the sense of equation (4.13), i.e.

ρ̃k̃q̃ = Tr
(
T̃ k̃q̃
†ρ̃
)

(4.40)

Expanding ρ in terms of (ground state) state multipoles (denoted T kq ), we find then

that the excited moments ρ̃k̃q̃ can be expressed as a weighted sum of the ground state

moments ρkq with weighting factors sk̃,kq̃,q , i.e.

ρ̃k̃q̃ =

2j∑
k=0

+k∑
q=−k

sk̃,kq̃,q ρ
k
q

where

sk̃,kq̃,q ≡ Tr
(
T̃ k̃q̃
†d2

0T
k
q d

2
0

)
(4.41)

It turns out, somewhat remarkably, that the sk̃,kq̃,q are, within a constant multiplicative

factor, completely independent of the underlying hamiltonian and are expressible in

terms of only Clebsch-Gordan coefficients and Wigner 9j-Symbols.
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To see this we first recall that operators are themselves vectors9, and that further

from any operator a we can define two (commuting) super-operators9 al and ar,

in general distinct, where al acts on the ket components of an operator (i.e. left

multiplication b → ab), and ar acts on the bra component (i.e. right multiplication

b→ ba). We then observe that d2
0 is (the q = 0 component of) a spherical tensor with

respect to both the angular momentum vector ~J associated with the kets |j,m〉, |j̃, m̃〉
as well as the angular momentum vector − ~J associated with the bras 〈j,m|, 〈j̃, m̃|.
The action of simultaneous left and right multiplication by d2

0, i.e. b → d2
0bd

2
0 then

defines a super-operator, which we denote by d2
0×d2

0, produced by the product of two

spherical tensors. In section 4.2.1.2 we found that such products admit a spherical

tensor decomposition via (4.17) so that

d2
0 × d2

0 =
4∑

K=0

+K∑
Q=−K

c(2, 0; 2, 0|K,Q)
[
d2 × d2

]K
Q

=
∑

K=0,2,4

c(2, 0; 2, 0|K, 0)
[
d2 × d2

]K
0

(4.42)

where the [d2 × d2]
K
Q are spherical tensor super-operators. In the second line we

eliminate the sum over Q in light of CG.2 and restrict the sum over K to even values

in light of the identity

c(j1,m1; j2,m2|j3,m3) = (−1)j1+j2−j3c(j1,−m1; j2,−m2|j3,−m3) (4.43)

Inserting equation (4.42) into (4.41) gives

sk̃,kq̃,q =
∑

K=0,2,4

c(2, 0; 2, 0|K, 0)Tr
(
T̃ k̃q̃
† [d2 × d2

]K
0
T kq

)
≡

∑
K=0,2,4

c(2, 0; 2, 0|K, 0)〈T̃ k̃q̃ |
[
d2 × d2

]K
0
|T kq 〉

(4.44)

where in the last step we convert the trace to an inner product in the sense of equation

(4.13) in order to bring our expression into form where the Wigner-Eckhart theorem

(equation (4.19) readily applies, giving

sk̃,kq̃,q =
∑

K=0,2,4

c(2, 0; 2, 0|K, 0)c(k, q;K, 0|k̃, q̃)〈T̃ k̃||
[
d2 × d2

]K ||T k〉 (4.45)

9c.f. section 4.2.1.1
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From here we augment the notation |T k〉 → |T k; j, j〉 (and likewise |T̃ k̃〉 →
|T̃ k̃; j̃, j̃〉) to highlight the coupled nature of the state multipoles. With this modifi-

cation the reduced matrix element in equation (4.45) becomes

〈T̃ k̃; j̃, j̃||
[
d2 × d2

]K ||T k; j, j〉 (4.46)

which is identical in form to the LHS of (4.22). Substituting in the corresponding

RHS we arrive at the fully reduced form of the ρ̃k̃q̃ :

ρ̃k̃q̃ =

2j∑
k=0

ρkq̃
∑

K=0,2,4

c(2, 0; 2, 0|K, 0)c(k, q̃;K, 0|k̃, q̃)

[k,K]1/2 (2j̃ + 1)(−1)K+k̃−k


j 2 j̃

j 2 j̃

k K k̃

∣∣〈j̃||d2||j〉
∣∣2 (4.47)

where the q sum has been eliminated in light of property CG.2, and the phase factor

simplifies from our restriction to O− and S− branch transitions so that j̃− j is even.

We find then that, as claimed, the only system-dependent parameter (the reduced

matrix element 〈j′||d2||j〉) enters as an overall scaling factor.

For O- or S-branch (∆j ≡ j̃ − j = ±2) excitation of a rotationally symmetric

ground-state density operator (ρkq ∝ δk0δq0), the ρ̃k̃q̃ have the following simplified

form:

ρ̃k̃q̃ ∝ δq̃0c(2, 0; 2, 0|k̃, 0)

{
j̃ j 2

2 k̃ j̃

}
(4.48)

The main simplification here arises from application of equation (4.23).

For an arbitrary ground-state density operator ρ the O- or S-branch excited

monopole moment ρ̃0
0 takes a similarly simplified form:

ρ̃0
0 ∝

2j∑
k=0

ρk0c(2, 0; 2, 0|k, 0)

{
j̃ j 2

k 2 j

}
(4.49)

Note here that for equations (4.48) and (4.49) we see again from (4.43) that only even

k̃ and k moments, respectively, enter in.

Equations (4.48) and (4.49) are quite similar in appearance. In fact we can state

that the relative strength of the excited state moments produced from the j1 →
j2 excitation from a symmetric ground state are equal to the relative weights of
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contributions of different ground state moments to the population of the excited state

excited in the opposite transition j2 → j1. This can be understood by interpreting

the second transition as the time-reversed version of the first.

d d d

Incidentally, equation (4.48) applied to S-branch (j̃−j = +2) and equation (4.49)

applied to O-branch (j̃ − j = -2) both possess alternative derivations that are sim-

ilar in character. The derivations are simpler than the above and apply directly to

our probing and pumping stages (respectively). We conclude the section with their

description.

Consider the excited-state moments ρ̃k̃q̃ produced by two-photon S-branch exci-

tation from a rotationally symmetric ground-state ρ ∝ T 0
0 . The only multipoles T̃ k̃q̃

that can be produced by action of the two-photon super-operator d2
0 × d2

0 on such a

ρ are those with k̃ = 0, 2, 4 and q̃ = 0 so that

ρ̃ =
∑

k̃={0,2,4}

ρ̃k̃0T̃
k̃
q̃

and thus the population pm̃ in the |j̃, m̃〉 angular momentum eigenstate is (equation

(4.27))

pm̃ = 〈j̃, m̃|ρ̃|j̃, m̃〉

=
∑

k̃=0,2,4

ρ̃k̃0〈j̃, m̃|T̃ k̃q̃ |j̃, m̃〉

=
∑

k̃=0,2,4

ρ̃k̃0(−1)j̃−m̃c(j̃, m̃; j̃,−m̃|k̃0)

We next note that, since the laser polarization is linear and presumed parallel to the

quantization axis, the action of the two-photon operator on an angular momentum

eigenstate |j,m〉 preserves the m quantum number, i.e. |j,m〉 → |j̃, m〉 (again CG.2).

There is therefore no way to achieve population of the |j̃, m̃〉 angular momentum

eigenstates with |m̃| > j. Since we are considering an S-branch transition this means

pm̃ = 0, m̃ = ±
(
j̃ − 1

)
,±j̃ (4.50)
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This defines a system of two linear equations (the +m̃ and −m̃ constraints are equiv-

alent) with three unknowns (ρ̃k̃0, k = 0, 2, 4), so that the moments ρ̃k̃0, k = 0, 2, 4 are

thus determined up to a multiplicative constant.

Next we consider the ρ̃0
0 monopole moment produced from an O branch transition,

which must by identical reasoning be expressible as a weighted sum over the k =

0, 2, 4, q = 0 ground-state moments:

ρ̃0
0 =

∑
k=0,2,4

akρ
k
0

By expanding the ρk0 via equation (4.28) in terms of the ground-state probabilities

pm we get

ρ̃0
0 =

∑
k=0,2,4

ak

+j∑
m=−j

(−1)j−mc(j,m; j,−m|k, 0)pm

We next observe that the LHS can not depend on the pm with |m| > j̃ since we can

not excite their associated angular momentum eigenstates. For O-branch transitions

we therefore require
d

dpm
ρ̃0

0 = 0, m = ± (j − 1) ,±j

yielding ∑
k=0,2,4

ak(−1)j−mc(j,m; j,−m|k, 0) = 0, m = ± (j − 1) ,±j (4.51)

which allows for determination of the ak within a multiplicative factor.

As expected, the form of equations (4.50) and (4.51) are identical, as one simply

the time reversal of the other.

4.6 Alignment Preparation

The H2 molecules in the SMB are unaligned, so that any multiplet is represented by

a density operator containing only a monopole term, i.e. ρo ∝ T 0
0 . As mentioned

earlier, this is not true for every diatomic molecule. O2, N2, and I2, for instance, will

all acquire a non-trivial alignment during the supersonic expansion[55], [56]. In any

event, we verify the non-alignment of our incident H2 molecules using our alignment

detection technique, described in section 4.7.

Alignment for our experiment is accomplished by transferring molecules via a two-

photon Raman process from some initially populated ground state multiplet |jo,mo〉
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to another initially unpopulated excited multiplet |j,m〉. The alignment produced

from the excitation process arises from the structure of the ground- and excited-state

multiplets as well as the angular momentum of the laser radiation.

In the following we give a quantitative description of the excited state multipole

moments produced in the limits of weak and strong laser intensity.

4.6.1 Weak Pumping

If the laser radiation is weak then we only need to consider the lowest order resonant

process, which for our scheme is a simultaneous absorption and emission of a high

and low energy photon, respectively. Intuitively in the weak limit molecules are so

rarely excited that we can certainly neglect the possibility that any excited molecules

are subsequently stimulated back into the ground state.

In this case the modification of the density matrix due to the pump laser is given

by the action of the two-photon operator described in the previous section. Since all

multiplets are by assumption initially unaligned, the moments ρkq in the excited state

produced by the two-photon process are given by equation (4.48), i.e.

γρkq ∝ δq0c(2, 0; 2, 0|k, 0)

{
j jo 2

2 k j

}
≡ δq0pk

The left-superscript γ here indicates the moments γρkq are referenced to the coordinate

system with the ẑ axis (i.e. the quantization axis) parallel to the pump laser. Since

the q 6= 0 moments vanish this holds for any selection of x̂ and ŷ axes.

We will be interested in the moments ρkq in a particular coordinate system, which

we will term the lab frame, where

• the ẑ axis is parallel to the surface normal, and

• the ŷ axis is perpendicular to both the surface normal and gravity 10

A diagram illustrating the lab-frame geometry is shown in figure 4.2. Equation (4.31)

can be applied to determine the lab frame moments ρkq from the polarization frame

10 This direction will turn out to be parallel to the direction of propagation for both the pump
and probe lasers. It will be helpful for later discussion to consider the more general case of non-fixed
laser propagation directions.
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Figure 4.2: Diagrams illustrating lab-frame geometry. ẑ axis is parallel to surface
normal, while ŷ axis is parallel to laser propagation direction which is fixed for all
measurements for both the pump and probe lasers. The quantization axis for the
polarization frame is shown in purple. Note that lab-frame axes are independent of
the orientation of the dimer rows, illustrated schematically in green.

moments γρkq . If we suppose that the pump polarization in the lab frame has polar

and azimuthal angles θ and φ respectively, the lab frame can be made to coincide

with the polarization frame by a compound rotation ω consisting of

• a rotation about the lab frame ŷ axis by an angle θ, followed by

• a rotation about the lab frame ẑ axis by an angle φ.

From (4.31) then we have

γρkq =
+k∑

q′=−k

Dk
q′q
∗(ω)ρkq′
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or, by the unitarity of the Dk
q′q

ρkq(θ, φ) =
+k∑

q′=−k

Dk
qq′(ω)γρkq′

=
+k∑

q′=−k

Dk
qq′(ω)δq′0pk

= Dk
q0(ω)pk

∝ Y q
k
∗(θ, φ)√
2k + 1

pk

(4.52)

where in the last step we use the well known identity of the Wigner D-matrices.

The moments ρkq
± for the cartesian multipoles (section 4.4.3) are determined from

equations (4.34) and (4.35) and yield

ρkq
±(θ, φ) = (−1)q

√
2− δq0
2k + 1

pk

(
+Re

−Im

)(
Y k
q (θ, φ)

)
We are interested in two special orientations of the pump polarization

• The cartwheeling orientation: θ = 0, φ = 0

• The helicoptering orientation: θ = π
2
, φ = 0

The moments cρkq for the cartwheels coincide with the polarization frame moments

and thus vanish unless q = 0 in which case we get:

cρk0
+ = cρk0 = γρk0 = pk

while the moments hρkq
± for the helicopters vanish for the negative parity cartesian

multipoles T kq
− and for the T kq

+ yield

hρkq
+ = (−1)q

√
2− δq0
2k + 1

pkY
q
k (
π

2
, 0)

4.6.1.1 Strong Pumping

In this section we investigate the limit of strong pumping, where we can assume the

photon flux is so intense that any molecule that can interact with the laser executes

a large number of cycles of
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• absorption into the excited state followed by

• stimulated emission back into the ground state.

The exact number of cycles a given molecule executes will be subject to some uncer-

tainty due to intensity variations within the spatial profile of an indiviual pulse as

well as variations in overall pulse energy from shot-to-shot. The result is that any

molecule that interacts with the laser will have a roughly 50% probability of being

excited, for the same reason that a car tire’s valve at the end of a long trip is just as

likely to be pointing up as pointing down, independent of its starting orientation.

In our case the transitions induced by the laser satisfy a ∆m = 0 selection rule,

where the multiplets |j,m〉γ are referenced to quantization axis parallel to the pump

polarization. If we consider an S-branch (jo → j = jo + 2) pumping transition, then

all 2jo + 1 of the ground state eigenstates |jo,mo〉γ have an excited state |j,mo〉γ to

transition into. Since all the eigenstates in the ground multiplet are equally populated,

we find for the excited state density multiplet %:11

% ∝
+jo∑

m=−jo

|j,m〉γ〈j,m|γ

The above equation can be cast in terms of the moments γ%kq , yielding

γ%kq = δq0

j−2∑
m=−j+2

(−1)j−mc(j,m; j,−m|k, 0)

≡ δq0Pk

(4.53)

Repeating the analysis in the previous section we find the cartwheeling moments

vanish unless q = 0 in which case we find

c%k0
+ = c%k0 = Pk

and similarly for the helicopters

h%k0
+ = (−1)q

√
2− δq0
2k + 1

PkY q
k (
π

2
, 0)

11 To avoid confusion with the weak pumping case, we denote the strong pumping density mul-
tiplet and associated moments with the variable %.

83



S1 pumped moments

k, q 0,0 2,0 2,2 4,0 4,2 4,4

weak cartwheel cρkq
+ 1 −4

√
3

7

√
22
7

weak helicopter hρkq
+ 1 2

√
3

7
−6

7

3
√

11
2

28
−
√

55
2

14

√
55
14

4

strong cartwheel c%kq
+ 1 − 5

3
√

3

4
√

2
11

3

strong helicopter h%kq
+ 1 5

6
√

3
−5

6
1√
22

−
√

10
11

3

√
35
22

3

k, q 6,0 6,2 6,4 6,6

strong cartwheel c%kq
+ 5

3
√

33

strong helicopter h%kq
+ − 25

48
√

33

5
√

35
22

48
−5
√

7
33

16

5
√

7
2

48

Table 4.1: Non-vanishing moments of the S1 pumped molecules for different polar-
ization orientations and pumping strengths.

The non-vanishing excited state moments ρkq
+ produced by an S1 (jo = 1 →

j = 3) pumping transition for both orientations (cartwheeling and helicoptering) and

pumping strengths (weak and strong) are listed in table 4.1 and plotted in figure

4.3. In addition, plots of the S1-excited bond angle probability distributions (section

4.4.4) for both pumping strengths are shown in figure 4.4.

4.7 Alignment Detection

In the probe stage of our experiment pulses of UV laser radiation are focused onto the

scattered molecules. The wavelength of the radiation is selected to resonate with a

two-photon O branch transition taking molecules from a j = 3 ground electronic state

multiplet to a j = 1 multiplet in an excited electronic state. Any molecules transferred

to the excited state are presumed to be ionized by the same laser pulse and collected
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Figure 4.3: Plot of alignment moments produced from S1 pumping for different
polarization orientations and pumping strengths. Positive and negative moments are
filled in with white and gray, respectively.

by the charged particle detector. The measured signal S is thus proportional to

the population in the excited state multiplet, which is in turn proportional to the

multiplet’s monopole moment ρ̃0
0. Applying equation (4.49) we can find S in terms

of the ground state multipole moments γρkq , i.e.

S ∝ ρ̃0
0 ∝

2j∑
k=0

γρk0c(2, 0; 2, 0|k, 0)

{
j̃ j 2

k 2 j

}
≡

2j∑
k=0

sk
γρk0 (4.54)

where, similar to section 4.6, the moments γρkq are referenced to a quantization axis

parallel to the probe laser polarization (i.e. the polarization frame). Again since we

only consider the q = 0 moments the above equation holds for any selection of x̂ and

ŷ polarization frame axes.

To obtain an expression for S in terms of the lab frame moments ρkq , we first

suppose, like we did for the pumping analysis, that the probe laser polarization has

a polar angle θ and azimuthal angle φ in the lab frame. Then the polarization frame

can be brought to coincide with the lab frame via a sequential rotation ω composed

of

• a rotation by an angle θ about the ŷ axis, followed by

• a rotation by an angle φ about the ẑ axis.

For such a rotation we have

Dk
q0
∗(ω) =

√
4π

2k + 1
Y q
k (θ, φ)
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(a) weak pumping (b) strong pumping

Figure 4.4: Bond angle probability distributions of S1 pumped multiplets for the
cartwheeling molecules. The helicoptering distributions are obtained by rotating the
cartwheeling distribution by 90◦ about the ŷ axis.

From equation (4.31) then we find

γρk0 =

√
4π

2k + 1
Y q
k (θ, φ)ρkq

After substituting in the transformed moments into equation (4.54), we then group

terms by |q| and apply the hermiticity condition (4.29) along with the identity

(Y m
l )∗ = (−1)mY −ml to find

S(θ, φ) ∝
2j∑
k=0

s̃k

k∑
q=0

(2− δq0) Re
(
Y q
k (θ, φ)ρkq

)
where s̃k ≡ sk√

2k+1
.

In terms of the cartesian multipoles defined in section 4.4.3

S(θ, φ) ∝
2j∑
k=0

s̃k

k∑
q=0

√
2− δq0(−1)qY q

k (θ, 0)
(
ρkq

+ cos qφ+ ρkq
− sin qφ

)
(4.55)

Comparing the above equation with equation (4.37) for the bond angle probability

distribution (equation (4.37)) we find a superficial similarity, so that perhaps we would
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be in some sense justified in interpreting the signal obtained at some polarization as

a measure of the probability of finding a molecule with its bond parallel to that

polarization. The k-dependent weights, however, differ for the two formulas12 so that

the equivalence only holds multipole-by-multipole (i.e. between varying q at fixed k).

Though equation (4.55) is valid for any probe polarization, in practice our laser

propagation direction is along the ŷ-axis so that we are working at fixed φ = 0. In

this case (4.55) simplies to

S(θ) ∝
2j∑
k=0

s̃k

k∑
q=0

√
2− δq0(−1)qY q

k (θ, 0)ρkq
+

=

2j∑
k=0

s̃k

k∑
q=0

(2− δq0) (−1)q

(
k∑

k′=0

yqk′kPk′(cos θ)

)
ρkq

+

=

2j∑
k′=0

(
2j∑
k=0

k∑
q=0

(
s̃k
√

2− δq0(−1)qyqk′kρ
k
q

+
))

Pk′(cos θ)

(4.56)

where in the second line we’ve expanded the Y q
k (θ, 0) in an orthonormal basis of

Legendre polynomials Pk′(cos θ), i.e. Y q
k (θ, 0) =

∑2j
k′=0 y

q
k′kPk′(cos θ).

Finally we arrive at an expression for the weight Sqk′k of the contribution of the mo-

ment ρqk
+ to the coefficient Sk′ (dubbed the “apparent moment”) of the k′th Legendre

polynomial in the expansion of S(θ), i.e.:

Sqk′k ∝ s̃k
√

2− δq0(−1)qyqk′k (4.57)

so that

S(θ) =
∑

k′=0,2,4

Sk′Pk′ (cos θ) (4.58)

where

Sk′ =
∑

k=0,2,4

k∑
q=0

Sqk′kρ
q
k

+ (4.59)

If we assume the moments ρkq
+ with odd q vanish, then we need only consider

even values of k′ since the associated yqk′k of the odd k′ would vanish by parity. The

justification for the neglecting odd q moments for the incident and scattered molecules

12 In fact the weights for S(θ, φ) vanish for any k 6= 0, 2, 4, while the weights for the bond angle
distribution P (θ, φ) must be nonzero for all even k since the distribution fully encodes the alignment
of the density multiplet.
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derives from the details of the pumping process (section 4.6) and the symmetry of

the surface (section 5.3), respectively.

The Sqk′k for the O3 transition (j = 3, j̃ = 1) are listed in table 4.2 and plotted in

figure 4.5. From the table it is clear that from a single scan S(θ) it is not possible

to uniquely determine the moments ρkq , i.e. the matrix Sqk′k is 3 × 6 and thus not

invertible13. From equation (4.55) we can see that a knoweldge of the φ dependence

of the ionization signal is necessary for a complete determination of the moments.

Experimentally this would require varying the propagation direction of the probe

laser which is not possible for our particular arrangement (as mentioned briefly earlier

we have the laser propagation direction fixed parallel to ŷ).

Alternatively the ionization signal could be monitored as the molecular ensemble

is rotated about the surface normal. For the incident molecules this is in principle

possible but would require varying the direction of the pump laser which is, for the

same reasons as the probe, beyond our experimental capabilities. For the scattered

molecules this would require a simultaneous rotation of the surface as well as the in-

cident ensemble about the surface normal. Though this is of course for us in general

not possible for the same reason as the incident molecules, complimentary informa-

tion about the scattering process can none-the-less be obtained by surface rotations

alone. In some circumstances unique determination of the scattered moments is even

possible, though only for some subset of the moments. The details of this procedure

are more appropriately presented alongside a discussion of scattering and surface

symmetry and so is reserved for section 5.1.

13 Though in some instances a known symmetry of the ensemble permits a full determination of
the moments. For example, the ensemble produced from a SMB for any molecule (not just H2) will
be cylindrically symmetric about the beam’s direction so that, with the beam axis chosen as the
quantization axis, only q = 0 moments occur. The Skq′q matrix for any k is invertible when restricted
to this subspace. This allows us to verify that non-alignment of the unpumped molecules.
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Sqk′k, j = 3, j̃ = 1

k′
k, q

0,0 2,0 2,2 4,0 4,2 4,4

0 1 −4
7

√
22
5

21

√
22
35

3

2 −4
√

3
7

4
7

√
110
21

−2
√

110
7

21

4
√

22
7

−2
√

22
5

7

√
22
35

7

Table 4.2: Elements of the matrix Sqk′k (equation 4.57) for the O3 transition. The
elements have been rescaled to give S0

00 = 1 and blank cells indicate a vanishing
element.

(0, 0) (4, 4)(2, 0) (2, 2) (4, 2)(4, 0)
(k, q)

0.0

0.2

0.4

0.6

0.8

1.0

|S
q kk

|

k = 0
k = 2
k = 4

Figure 4.5: Plot of matrix elements Sq
k̃k

for the O3 transition. Positive and negative
values are filled in with white and gray, respectively.
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Chapter Five: Scattering

In this chapter we develop the concepts that will aid us in the analysis of the rotational

structure of scattered molecules.

The first portion (sections 5.1-5.4) of the chapter takes a look at the symmetry of

our system and how the constraints arising from these symmetries allow us to extract

more information from our measurements. Beginning in section 5.1 we characterize

the symmetry of the surface, going on in section 5.2 to show how surface disorder

effectively enlarges the symmetry group of the system (i.e. C2v → C4v ⊃ C2v).

Then in section 5.3 we classify the symmetries of the multipoles, and then show

in section 5.4 how the constraints arising from the system symmetry allow us to

use our measurements to make a full determination of the moments created in the

scattering of cylindrically symmetric incoming distributions. The analysis makes use

of connections between the multiplets obtained by scattering off of

• surfaces whose terraces contain dimer rows running parallel to the lab-frame x̂

and ŷ axes,

• surfaces whose terraces contain dimer rows running at 45◦ to the lab-frame x̂

and ŷ axes.

In following we refer these as the dimer-parallel and dimer-diagonal cases, respectively

(see figure 4.2 for an illustration).

In the second portion of the chapter we apply the model potential developed by

Brenig and Pehlke (section 5.5) and derive a prediction for the scattered multiplets

which can be compared to our results.

5.1 Symmetry of Si(100) Surface

The c(4x2) reconstruction of the Si(100) surface is shown in figure 5.1. In addition

to the translation symmetry present on all crystalline surfaces the surface possesses

a number of point (i.e. fixed-center) symmetry operations:

• Oπ: Rotation by 180◦ about the surface normal.
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Figure 5.1: Top-view diagram of the Si(100) c(4x2) reconstruction. The surface
normal points out of the page. The pairs of dark and light large circles represent
the buckled dimers, and the small circles represent subsurface atoms bonded to the
dimers. The rectangle represents the surface unit cell and the crosshair represents
the origin of point group symmetry operations. The dashed lines denote the (011)
and (011̄) directions and represent the two reflection planes, with the horizontal and
vertical lines lying in the Oa and Ob reflection planes respectively.

• Oa: Reflection about the plane containing the surface normal and dimer bonds.

• Ob: Reflection about the plane containing the surface normal and the line run-

ning between the dimer rows.

Applying any of these operations on all the silicon nuclei simultaneously is equivalent

to a permutation of the nuclei. This implies that we can apply any of these same

operations to the coordinates of the scattering molecule without affecting the overall

nuclei-nuclei Coulomb energy or ground-state electronic energy. Since any orthogonal

transformation preserves the kinetic energy, the operators corresponding to these

symmetry operations commute with the full hamiltonian H describing the molecular

motion and thus also with the scattering operator S transforming the ingoing state

|ψo〉 to the outgoing state |ψ′〉, i.e.

[Oα, S] = 0

where α = π, x, y and

S ≡ lim
t±→±∞

e
H(t+−t−)

i~
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so that

|ψo〉 → |ψ′〉 = S|ψo〉

5.2 Symmetry of the Scattering Super Operator

As discussed in section 4.3, a density operator ρ evolves according to the rule

ρo → ρ′ = SρoS
†

If we assume, however, that the terrace encountered by any given molecule has a

dimer row orientation of (011) or (011̄)) with equal probability, then the scattered

density operator should be averaged over the orientiations in the following sense:

ρ′ =
1

2

(
SρoS

† + S ′ρoS
′†) ≡ S̄ρo (5.1)

where

S ′ = Oπ/2SO
†
π/2

where Oπ/2 is a rotation by 90◦about the surface normal, transforming dimer rows

from the (011) orientation to the (011̄) orientation and vice versa.

At the end of equation (5.1) we define the super operator S̄ taking ρo → ρ′.

Because of the equal-weighted averaging over dimer row orientations, S̄ commutes

with four additional symmetry operators, in addition to the operators Oπ, Oa, and

Ob defined earlier. These operators are:

• Oπ/2: Rotation by 90◦ about the surface normal (just introduced).

• O−π/2: Rotation by -90◦ about the surface normal.

• O+: Reflection about the 45◦ diagonal.

• O−: Reflection about the -45◦ diagonal.

The seven symmetry operators defined above, along with the trivial identity operator

Oe ≡ 1, form a representation of the C4v group. The invariance of the scattering

super operator S̄ implies a decomposition

S̄ =
∑
j

S̄j (5.2)

where the super operator S̄j mixes operators of identical C4v symmetry j.
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k
q

0 1 2 3 4 5 6

0 A1

1 A2 E
2 A1 E B1, B2

3 A2 E B2, B1 E
4 A1 E B1, B2 E A1, A2

5 A2 E B2, B1 E A2, A1 E
6 A1 E B1, B2 E A1, A2 E B1, B2

Table 5.1: C4v symmetries of cartesian multipoles for the dimer-parallel case. For
q = 0 we have T kq

− = 0 so only the + symmetry is listed. For the pairs A1, A2 and
B1, B2 the first (second) symmetry of the pair corresponds to the symmetry of the
+ (-) multipole, respectively. The E symmetry is two-dimensional; that is, there
is no basis for which the representation is diagonal. The symmetries with bold font
correspond to multipoles that we can detect. For the dimer-diagonal case we exchange
the B1 and B2 symmetries.

5.3 Symmetry of the In- and Out-going States

Consider next the subspaces Vin and Vout of in- and out-going operators

V in
out
≡ |±z; jn,m〉〈±z; jn,m

′|, m,m′ = −jn, . . . ,+jn

where

• +z and −z denote the ingoing and outgoing momentum states, taken to be

antiparallel and parallel to the surface normal for the ingoing and outgoing

states respectively, and

• the set jn,m with m = −j, . . . ,+j comprises an angular momentum multiplet.

Since the surface normal is invariant to all the symmetry operations, and an angular

momentum multiplet is invariant to any orthogonal transformation, these subspaces

can be decomposed into a basis of operators of definite symmetry. These operators

turn out to be the multiplet’s cartesian multipoles T kq
± defined in section 4.4.3. For

details about the symmetry classification of the multipoles the reader is referred to

section B. The symmetry designations of the multipoles for the dimer-parallel case
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are listed in table 5.1. The designations for the dimer-diagonal case are obtained from

the dimer-parallel case by a simple modification described in the table caption.

5.4 Determination of Scattered Moments

The symmetry properties outlined in the previous section of the mulitpoles place

constraints on the moments of the scattered multiplets.

The most important import constraint for our purposes concerns the scattering of

cylindrically symmetric multiplets. By cylindrically symmetric we mean multiplets

containing only q = 0 multipoles. Such examples would include the cartwheeling

pumped multiplets or the trivial unaligned multiplet (∝ T 0
0 ). For such multiplets we

find that T 4
4

+ is the only detectable q 6= 0 multipole that can be populated by surface

scattering.

This can be seen by inspection of table 5.1, keeping in mind that the surface can

only mix multipoles of identical C4v symmetry (see equation (5.2)).

Further, the ρ4
4

+ moments for the dimer-parallel and dimer-diagonal cases are

related by negation, i.e. ρ4
4

+ ↔ −ρ4
4

+. To see this we note that1

• the incoming ensemble contains only q = 0 multipoles which are invariant under

±45◦ rotations, while

• T 4
4

+ → −T 4
4

+ under ±45◦ rotations, combined with the fact that

• rotating the scattering super operator by ±45◦ is the same as rotating the

incoming and outgoing density operators by ∓45◦.

The above constraints imply that from measurements of the dimer-parallel and

dimer-diagonal apparent moments2 pSk′ and dSk′ , respectively, the full scattered mul-

tiplet of cylindrically symmetric incident distributions can be determined. Explicitly,

referring to equation 4.57 or table 4.2 we find that

ρk0
+ =

1

2S0
kk

(
pSk + dSk

)
(5.3)

1 see section B
2 see equation (4.59)
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for k = 0, 2, 4, and that

ρ4
4

+ =
1

2S4
k′4

(
pSk′ − dSk′

)
(5.4)

for k′ = 0, 2, 4 so that in fact we have an over-determined system of equations for

ρ4
4

+. The measured results for ρ4
4

+ for the different k′ serve as a consistency check. If

the results agree then we may be confident that our assertions about the symmetry

of the system are justified.

For the helicoptering molecules less can be said by symmetry considerations alone.

It is interesting to note that in the dimer-parallel case we probe the B1 component of

the scattering super operator S̄, while the dimer-diagonal case probes its B2 compo-

nent. The difference pSk′ − dSk′ does not however allow us to compare the different

components since the analysis will be complicated by a non negligible T 4
4

+ term.

5.4.1 The “Dimer-Half-Diagonal” Case

For completeness we mention here briefly that for the “dimer-half-diagonal” case

where the dimer-rows run at 22.5◦ = π
8

to the lab-frame ŷ or x̂ axes we find that the

T 4
4
± multipoles exchange symmetries, i.e. A1 ↔ A2. In this case we expect the ap-

parent moments hdSk′ for molecules scattered from a cylindrically symmetric incident

distribution to contain contributions from only the q 6= 0 multipoles, implying

ρk0 =
hdSk′

2S0
kk

for k = 0, 2, 4. Including these equations along with the equations (5.3) from the

dimer-parallel and dimer-diagonal measurements would then overdetermine of the

system of equations for the q = 0 moments, and serve as a further consistency check.

5.5 The Brenig-Pehlke Potential

To provide context for the discussion of the results I include in this section calcu-

lations on the dynamics of hydrogen molecules scattering from the Si(100) surface.

The molecule-surface interaction is described using a model potential developed by

Wilhelm Brenig and Eckhard Pehlke[57]. The potential attempts to account for a

number of experimental phenomena known at the time about the H2/Si(100) system.

These phenomena include:
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Figure 5.2: The molecule-lattice potential energy surface, from an earlier model by
Brenig [58]. During a desorption event (increasing s), motion along the reaction
(molecular-surface distance) coordinate s is converted to lattice vibrations x. Simi-
larly, adsorption is strongly suppressed at low surface temperatures where displace-
ments of the silicon atoms from their ≈ 1.2Å equilibrium positions are small.

• The barrier puzzle: adsorption measurements[59] of hydrogen molecules on

clean Si(100) indicate large (∼ .8eV) adsorption barriers, in apparent disagree-

ment with the low (.4eV) translational energies measured on desorption[60].

The Brenig-Pehlke potential attempts to account for the disagreement by al-

lowing strong coupling of lattice and molecular motion at the transition state

(see figure 5.2).

• Vibrational heating / vibrationally assisted sticking: H2 molecules desorbing

from Si(100) show a ≈ 25× increase in vibrational excitation (ν = 1) over

that expected from a Boltzmann distribution at that surface temperature[61].

Likewise, adsorption is enhanced for molecular beams using higher temperature

nozzles at equal kinetic energies[7]. This is presumably due to the higher frac-

tion of vibrationally excited molecules at the higher nozzle temperatures. From

the measurements investigators estimate a ν = 1 adsorption barrier of .4eV, a

reduction of .4eV from the .8eV barrier for ν = 0 (compare this to the .52eV
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required for vibrational excitation).

• Angular sticking dependence: Using wafers with large (> 2◦) miscut angles,

Si(100) surfaces can be prepared with dimer rows oriented in one predomi-

nant direction. Angle-resolved sticking measurements were performed using

such samples and large anisotropies were observed[4], with sticking showing

cos3 θ and cos12 θ dependencies in the polar angle for the dimer-parallel and

-perpendicular directions, respectively. Investigators trace this behavior to the

strong directionality of the covalent bonding at the silicon surface.

• Rotational cooling: From the same desorption measurements exhibiting vibra-

tional heating[61] investigators also find rotational state populations with ef-

fective temperatures Tr ≈ 345K roughly half that of the surface temperature

Ts ≈ 780K. The authors rationalize these findings by assuming an adiabatic

evolution from highly frustrated rotation at the transition state to fully unhin-

dered rotation in the gas phase. As the molecule desorbs energy in the frus-

trated motion is released into translational motion, resulting in cold rotational

temperatures.

5.5.1 The Potential

The Brenig-Pehlke potential is a function of (a subset of) the nuclear coordinates only.

The electrons are presumed to remain at all times in their collective ground state, and

the corresponding ground state electronic energy contributes to the effective potential

in which the nuclei move. In other words, the Born-Oppenheimer approximation is

assumed to apply.

In contrast with full ab initio methods[28] whereby a potential energy function is

constructed by interpolation of a large number of electronic structure (e.g. density

functional theory) calculations, the Brenig-Pehlke potential is built around a model

Hamiltonian with a small number of fitting parameters that are determined from a

mixture of empirical data or density functional theory calculations.

The Hamiltonian is built from the following coordinates:

• s, the reaction coordinate. Qualitatively, as s increases (decreases) the molecule

is making progress towards completing its desorption (adsorption) reaction.

Large postive values of s correspond to large molecule-surface distances, while
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negative values correspond to large H-H separation (i.e. bond breaking). There

is a ≈ .25Å wide region near s = .1Å where the coordinate transitions between

the two limiting behaviors. The model potential is designed so that when all

other coordinates vanish s follows the minimum energy path.

• v, the vibration coordinate. Mathematically this is simply the direction perpen-

dicular to the reaction coordinate. When s is large and positive v corresponds to

the bond length, and as s decreases v gradually evolves to represent the ampli-

tude of symmetric (in-phase) vibration of the two H-Si bonds of the chemisorbed

molecule.

• x, the substrate coordinate. This coordinate is intended to represent the lattice

motion excited upon associative desorption of H2. Though it requires in general

many coordinates to describe the motion of surface atoms, theoretical evidence

points towards the motion of dimer buckling/unbuckling as dominating partic-

ipant.

• y1 and y2, the transverse coordinates. Corrugation in the potential in these

corrugates gives rise to diffractive effects and determines the angular dependence

of the sticking probability/desorption flux.

• θ and φ, the rotational coordinates. These are the usual spherical coordinates

of the molecule bond angle, with the ẑ axis referenced to the surface normal

and the x̂ and ŷ axes referred to the directions parallel/perpendicular to the

dimers. The variation in the potential with respect to these coordinates will be

our main object of concern.

The potential couples all the coordinates together only indirectly via the reaction

coordinate s. In detail:

V (x,y, v, θ, φ; s) = Vt(s) + Vp(x; s) + Vv(v; s) + Vr(θ, φ; s) + Vc(y; s)

For the precise form of all the different components of the potential we refer the

reader to the original publication [57], but it will be worthwhile at this point to state

explicitly the form of the rotational potential Vr(θ, φ; s)

Vr(θ, φ; s) =
mr(s)2

2

(
ω2
θ(s) cos2 θ + ω2

φ(s) sin2 θ cos2 φ
)
≡ Vθ(s) cos2 θ+Vφ(s) sin2 θ cos2 φ

(5.5)
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Figure 5.3: A plot of the s-dependence of the potentials Vt(s) and Vr(θ, φ; s) for
the reaction coordinate s and rotational coordinates θ and φ, respectively. For the
rotational potential Vr we have set θ = 0 for the φ-independent component and
θ = π/2 and φ = 0 for the φ-dependent component.

This potential, as expected, exhibits the full C2v symmetry of the clean silicon surface

(see section 5.1). The s-dependence of the different components of the potential is

plotted in figure 5.3.

5.5.2 Dynamics Calculations

With the potential described above, along with the appropriate kinetic energy oper-

ator, a full scattering calculation could be in principle be performed to determine the

scattered ensemble for a given incident ensemble. However, it is only very recently

that 7D quantum dynamical calculations have even become computationally feasi-

ble[28], and, in light of the extreme simplicity of the model, it is doubtful that the

necessary investment of labor and resources is justified.

With this in mind, we instead opt for very rough approximate approach to solving

the scattering dyanmics, with the aim of obtaining a qualitative picture of surface-

mediated realigment of our molecular ensemble. The general strategy is as follows:

1. Using the full Brenig-Pehlke Hamiltonian, determine a reasonable classical tra-

jectory s(t) for the reaction coordinate.
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2. The time-evolution of the reaction coordinate then gives rise to an effective

time-dependent potential on the other coordinates.

3. A scattering matrix relating the incoming and outgoing states is determined by

solving the time dependent Schrödinger equation.

Descriptions and results of the classical trajectory and quantum mechanical scattering

calculations are given separately in the following sections (5.5.2.1 and 5.5.2.2).

5.5.2.1 Classical Trajectory Calculations

To determine the classical trajectory s(t) then we simply neglect all terms except

for the translational potential Vt(s). This choice was selected after a preliminary

investigation of the magnitude of coupling between the various degrees of freedom

at the incident energies used in our experiment. The main qualitative conclusion of

the investigation was that the turning point occurs early enough along the reaction

path that the potential energy has very little curvature, so that the motions along

the different coordinates are largely independent. The quantitative results are illus-

trated in figure 5.4, where we have plotted the energy transfer between the phonon

and vibrational coordinates as a function of beam energy (i.e. initial translational

energy in the s-coordinate). The energy transfer is determined by a classical tra-

jectory simulation3 involving the reaction coordinate s and single transverse degree

of freedom (i.e. molecular vibration v or phonon vibration x) initialized with and

without quantum mechanical zero-point energy. From the plot it is clear that in all

cases negligible energy is coupled out of the reaction coordinate. Coupling to the sur-

face coordinates y1 and y2 can be neglected by appeal to a simple ∆p/∆t ∼ ∆V/δX

argument which estimates energy transfers on the order of ∆E < 10−3meV. Looking

again at figure 5.3, we find however that for our ≈ 100meV beam energies the corru-

gation in rotational potential Vr(θ, φ, s) is comparable to the potential Vt(s) along the

minimum energy path. Using a ∆j/∆t ∼ ∆V/∆φ argument similar to that applied

for the surface coordinates, we might expect the molecule-surface interaction to facil-

itate a transfer of a full ~ unit of angular momentum to/from the rotational degrees

of freedom. The implied energy transfer between the translational and rotational

3 The simulations solve the appropriate Euler-Lagrange equations for the Brenig-Pehlke Hamil-
tonian using a Runge-Kutta method (RK4) with a time step of .1/ωGv , where ~ωGv ≈ 516meV is the
gas-phase H2 vibrational quantum.
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Figure 5.4: Classical coupling to (a) vibrational coordinate v and (b) phonon coor-
dinate x as a function of the initial translational energy in the reaction coordinate
s. The plots to the right contain zero point energy in the non-s coordinates and the
error bars indicate the spread from a random sampling of N = 10 initial oscillation
phases.

degrees of freedom would then be on the order of the incident beam translational

energy. The Brenig-Pehlke potential in other words predicts strong coupling between

the reaction coordinate and the rotational coordinates at our beam energies. Our

approach fails to rigorously treat this correlation and this failure is perhaps most the
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Figure 5.5: Classical trajectory for the reaction coordinate s at an incident energy
of 100meV with other coordinates frozen at equilibrium geometries. Coupling to the
rotational coordinates is activated for reaction coordinates s . 1Å (see figure 5.3).

approach’s greatest shortcoming. It is nevertheless plausible that despite this short-

coming the approach should allow for a rough picture of the extent of realignment

(i.e. |j,m〉 → |j,m′〉, m′ 6= m) incurred by scattering from the surface.

Having addressed the caveats, we present the trajectory s(t) obtained by freezing

all the non-reaction coordinates is shown in figure 5.5. This trajectory will be used

to generate a time-dependent potential in which we can propagate a quantum me-

chanical ensemble of aligned molecules and obtain a prediction for the alignment of

the scattered ensemble.

5.5.2.2 Quantum Mechanical Scattering Calculations

As mentioned earlier, upon substituting s→ s(t) the Brenig-Pehlke potential is trans-

formed from a time-independent seven-dimensional potential to a time-dependent

six-dimensional potential. Further, since the remaining degrees of freedom were all

coupled indirectly via the reaction coordinate s, the potential now splits into a sum so

that the rotational motion completely decouples from the other degrees of freedom4.

4 Schematically, if a Hamiltonian HA(t) scatters |a〉 → |a′〉 and a Hamiltonian HB(t) scatters
|b〉 → |b′〉, then the combined Hamiltonian HA(t) + HB(t) scatters |a〉 ⊗ |b〉 → |a′〉 ⊗ |b′〉. In other

102



To determine the effect of scattering on the rotational motion it is therefore suffi-

cient to compute the time evolution of the incident rotational states |j,m〉 of interest

under the influence of the rotational potential Vr(θ, φ; s(t)). This elimination of the

non-rotational degrees of freedom massively reduces the complexity of the scattering

problem, thus permitting a computationally inexpensive solution.

Since we are interested in rotationally inelastic scattering of the j = 3 multiplet

of rotational states, they comprise our input basis. Following the suggestion in the

Brenig-Pehlke publication [57] we allow for scattering into any of the j = 0 to j =

7 multiplets, though the resulting amplitudes in the j = 3 multiplet differ only

superficially from those obtained by allowing only reorienting collisions, i.e. |j,m〉 →
|j′,m′〉, j = j′ = 3.

The time-dependent Schrödinger equation is solved using an iterative/perturbative

algorithm described in appendix C. We selected a time step of .002/ω ≈ .01fs where

ω is the natural frequncy of a harmonic approximation to the repulsive barrier in

the reaction coordinate. This choice of time step resulted, for all input states, in a

sum of final state squared amplitudes that differed from unity by less than a part in

a thousand. Smaller or larger times steps decreased or increased this difference in

rough proportion. The results are shown in figure 5.6. For each in-state (i.e. for each

|j,m〉 for fixed j = 3 and m = −3,−2, . . . , 2, 3) the algorithm required roughly ten

iterations to converge, indicating multiple reorienting collisions. This is supported

by rough inspection of the scattering matrix, which, for instance, shows significant

scattering from m = −3 → m′ = +3 despite the ∆m = −2, 0,+2 selection rule

enforced by the form of the perturbation.

Figure 5.7 shows the evolution of the k = 2, q = 0 multipole moment, i.e. the

quadrupole alignment parameter, for three initial ensembles. Interestingly, the Brenig-

Pehlke potential predicts in both the helicopter and cartwheeling cases a reversal

of the quadrupole alignments, while predicting no induced alignment in an intially

isotropic ensemble.

This same result is illustrated from a different perspective using bond-angle prob-

ability distributions, shown in figure 5.8. The elongated and narrow axes for both

of the aligned ensembles shrink and grow respectively upon scattering, while the

unaligned ensemble looks mostly unchanged.

words, if the two subsystems A and B begin uncorrelated they remain so.
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Figure 5.6: Scattering matrix |j,m〉 →
∑+j

m′=−j sm′m|j,m′〉 for the j = 3 multiplet.
Bars with negative height (below the semi-transparent plane) indicate negative am-
plitude.

We can also look at how the individual multipole moments scatter. In figure 5.9

we have plotted the scattering matrix s(k′,q′),(k,q) for the different cartesian multipoles

with A1 symmetry, i.e. totally symmetric with respect to the C4v symmetry group.

From the figure we can make a couple observations:

• unaligned molecules (ρ ∝ T 0
0 ) remain unaligned, as we saw earlier in figures 5.7

and 5.8, while

• an incoming quadrupole moment is completely converted into purely k = 4

components upon scattering. Further,

• the k = 4, q = 0 (hexadecapole) moment obtains some quadrupolar character

and, importantly,
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Figure 5.7: Time evolution of the quadrupole alignments for three initial ensemble
alignments – unaligned, cartwheel, and helicopter. The reaction parameter s(t) is also
plotted to show that changes in alignment occur primarily at the classical turning
point.

• both the cylindrically symmetric k = 2 and k = 4 moments “feel” the surface-

parallel potential corrugation in that they generate signficant amplitude in the

cylindrically assymetric k = 4, q = 4 moment.

As discussed at the end of section 4.7, a single ionization measurement S(θ) (equa-

tion (4.58)) can not disambiguate, for instance, a loss of quadrupole alignment from

modulation of probability density in the azimuthal coordinate φ. In the same discus-

sion it was found that for cylindrically symmetric incident ensembles the full scat-

tered ensemble could be measured by taking ionization measurements at two different

dimer-row orientations.

For the greatest effect the orientations should be those with the probe laser propa-

gating at 0◦ and 45◦ to the dimer rows, i.e. the “dimer parallel” and “dimer diagonal”

cases. The predicted ionization scans for the Brenig-Pehlke potential are shown in

figure 5.10. The modulation shows qualitatively different behavior for the different

dimer orientations, indicating signficant interplay between molecular rotation and the

dimer-row reconstruction.
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Figure 5.8: Incident and scattered bond angle probability distributions (see section
4.4.4) for three different incident ensembles. The lab frame coordinate axes (section
4.6) are superimposed on the scattered cartwheel distribution for reference.
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Figure 5.9: Graphical illustration of the scattering matrix S(k′,q′),(k,q) relating incoming
and outgoing multipoles of A1 (totally symmetric) symmetry. Bars with negative
height (below the semi-transparent plane) indicate negative amplitude.
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Figure 5.10: Predicted ionization signal S(θ) for cartwheeling molecules scattering
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Chapter Six: Results

6.1 Measurements

In this section we present data from a series of experiments measuring changes in the

alignment of j = 3 H2 molecules induced by scattering from the Si(100) surface. We

begin by describing the procedure that allows us to locate the pumped molecules after

they scatter from the surface. Following this measurements are shown which establish

the effectiveness of the alignment preparation and detection. We then move on to

the presentation of the scattered alignment measurements and the determination of

the apparent moments characterizing the alignment.

6.1.1 Time of Flight Measurements

To identify the incident and scattered/reflected1 molecules we measure the ionization

signal as the pump-probe delay is increased, producing a time of flight curve. Refer

to figure 6.1. At large probe-surface distances, the time of flight curve produces a

single peak corresponding to those incident molecules excited by the pump laser. As

the probe laser is brought closer to the surface, a distinct second peak at later pump-

probe delays emerges which can be associated with the scattered molecules. Before

alignment measurements are made, the surface is brought to within 1◦ of parallel with

the probe laser. This reduces signal loss incurred from the spread in transit times

due to molecules at different points along the probe’s propagation (k̂) direction. The

probe laser is also brought as close as possible to the surface without introducing

excessive overlap between incident and reflected molecules or deleterious scattering

of laser light from the surface. This helps to reduce signal loss from the transit time

spread due to velocity dispersion (≈ 5%) in the incident molecules.

Figure 6.2 shows a time of flight profile for j = 3 pumped molecules probed on

the O3 branch at conditions (probe↔surface angle/separation) typical for alignment

measurements. The two traces shown were taken with all variables held fixed save

for the probe half wave plate, which is oriented at angles θ‖ and θ⊥ corresponding to

1 We use the two terms interchangeably throughout.
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Figure 6.1: Evolution of time of flight profiles as surface is rotated to become parallel
with pump and probe lasers. The molecules measured here have been excited by the
pump laser to the j = 1 rotational level of the ν = 1 excited vibrational state. This
state has negligible background and was chosen for the purpose of illustration. At
each lid angle, indicated to the right of each trace, the probe laser is translated as
close as possible to the surface. As the angular mismatch is reduced (progressing from
the lower traces upwards) the reflected peak appears closer to the incident, narrows
in width and increases in integrated intensity.

maximum (‖) and minimum (⊥) incident signal (θ‖ − θ⊥ = 45◦). The vertical scale

of the second trace has been adjusted to illustrate the identical shape and location

of the incident peaks. We take this to show that no unintended deflections occur as

the waveplate is rotated. That the scattered peaks have different heights indicate a

change in the alignment upon scattering2.

6.1.2 Half Wave Plate Scans

To obtain more detailed information about the influence of scattering on alignment

we monitor ionization S(θ) at fixed pump-probe delay as the probe polarization θ

is rotated. The relation between S(θ) and the ensemble alignment is worked out in

section 4.7.

2 These traces were obtained well after the most recent cleaning procedure (section 2.2.2) so the
scattered alignment can not be said to reflect the interaction with the ideal Si(100) surface.
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tinc trefl

Figure 6.2: O3 time of flight profile. The ‖ and ⊥ traces were measured with the half
wave plate orientated for maximum and minimum incident signal, respectively. The
tinc and trefl markers indicate schematically the times at which half wave plate scans
(section 6.1.2) are performed for the incident and scattered molecules respectively.
For background subtraction we use delays tbg (not shown) ≈ 50ns before tinc or
≈ 1000ns after trefl.

Before proceeding with discussion of the probe polarization scans at the alignment-

sensitive O3 branch, we present in figure 6.3 a scan at Q0 as a sort of “control”. The

flatness (2% rms) demonstrates constancy in the beam’s ellipticity with rotation of

the half wave plate. 3 Combined with measurements at fixed half wave plate angle

showing > 100× max:min ratio of reflection coeffecient from a Brewster plate, we can

assert with confidence that the probe laser maintains pure linear polarization as it is

rotated by the half wave plate over the full 180◦ range.

In figure 6.4 we evaluate the effectiveness of alignment and detection techniques.

The plotted ionization S(θ) represents the contribution from the pumped incident

j = 3 molecules. The background has been removed by taking at each angle the

3 To see this we note that for any complex polarization vector ε̂ a basis d̂10, d̂
1
+, d̂

1
− of spherical

tensors can always be found where at least one of the circular components ε̂ · d̂1± vanishes. The

magnitude of the remaining circular component goes as
√

1− cos 2∆, where ∆ is the eccentricity of
the polarization ellipse. Since circular polarized light can only contribute to the |j = 0,m = 0〉 →
|j = 0,m = 0〉′ two-photon cross section via simualtaneous absorption of opposite handed photons,
the nonzero circular component does not contribute either.
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Figure 6.3: Probe polarization scan at the Q0 transition.

difference Sinc − Sbg where Sinc is the signal obtained with the probe delay set at

tinc (figure 6.2), and Sbg the signal at some probe delay tbg well before or well after

the arrival of the pumped molecules, but in close enough temporal vicinity that the

molecular beam density is unchanged4.

The prediction is obtained by application of equation 4.59 to the case of strongly

pumped molecules (equation 4.53). A correction due to hyperfine depolarization

(section D) has also been applied. Aside from a vertical scaling factor, the only

fitting parameter used was a horizontal offset to compensate for lack of knowledge

of the half wave plate’s fast axis5. The close agreement between observation and

prediction gives confidence that both the alignment preparation and detection stages

are working as expected.

A further necessary consistency check is shown in figure 6.5, where we have plot-

ted two alignment measurements of the incident molecules, acquired under identical

4 The values for this and all other polarization “runs” presented here are obtained by averaging
of multiple “trials” (i.e. dataset = group of trials performed under identical conditions). Error bars
similarly are derived by taking the standard deviation of results at each angle and dividing by the
square root of the number of trials, i.e. measurements at fixed angle are presumed i.i.d. Each trial
occurs within 30 minutes of the previous. Indivual trials are 20-40 minutes in duration and consist
of rapid (3-5 minute) scans over the range of polarization angles with the intention of reducing error
associated with long term drift (laser power/wavelength, molecular beam brightness, etc.).

5 Though this, of course, could be determined by some Brewster-type measurement.
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Figure 6.4: Alignment characterization. The x-axis has been offset (modulo 180◦) for
best agreement with prediction.

conditions save the pump polarizer orientations which differ by 90◦. This 90◦ shift is

clearly reflected in the ionization dependence S(θ), or in other words that the pumped

molecules retain memory of the pump polarization. This check was perfomed for all

measurements presented in this section.

6.1.3 Scattering Measurements

To ensure that we are studying the interaction of H2 with the ideal Si(100) surface,

the silicon sample is heated by a high temperature in situ anneal (section 2.2.2)

and cooled slowly (1-2 minute) to room temperature before a measurement trial is

started. Individual trial are limited to no more than 40 minutes, at which point the

sampled is again cleaned and cooled down before beginning another trial. For all

measurements we assume the surface temperature is between 300K and 400K. The

cleanliness/well-orderedness of the surface and the orientation of its dimer rows (i.e.

parallel or diagonal) are both verified using LEED (see section 2.2.3).

The results for all runs considered are plotted in figure 6.6. The incident and
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Figure 6.5: Probe polarization scans for the incident molecules pumped in the
cartwheeling and helicoptering orientations. The cartwheeling trace is also shown
in figure 6.4.

Helicopter data was assembled from single trial so error bars are omitted.

scattered data are fit to the following functional form:

S(θ) =
∑

k′=0,2,4

Sk′Pk′ (cos θ′) (6.1)

where Pl(x) is the lth Legendre polynomial. For the incident molecules θ′ = θ −
θo, where θ is the probe polarization with unknown offset. The parameter θo is

fitting along with the apparent moments S
(i)
k′ to determine the offset. Ignoring for the

moment the starred (*) runs, the apparent moments S
(s)
k′ for the scattered molecules

are leaving θo fixed at the value determined for the incident molecules.

Runs A and C, however, exhibit a slight (≈ 10◦) offset in the location of their

symmetry axis. We suspect that this shift is unphysical as it would imply the existence

of odd q moments in the scattered distribution which we do not expect to generate

on account of the symmetry of the scattering potential.

This reasoning, one could argue, relies on somewhat strong assumptions concern-

ing the ideality of the silicon surface structure. For the sake of completeness we

include then, in addition to runs A and C, the runs A* and C* containing identical
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data to their unstarred counterparts but differing in that a horizontal offset is included

as a fitting parameter in the determination of the scattered apparent moments S
(s)
k′ .

6.2 Discussion

6.2.1 Alignment Survival

A few general comments can be made regarding the results contained in table 6.1.

First it is clear from inspection of the ratios S
(r)
k′ /S

(i)
k′ that in all cases presented there

is a modification of the alignment attributable to the molecule-surface interaction.

Though even in free propagation there will be a decrease in alignment resulting from

hyperfine depolarization (section D), we find the measured decrease in all cases well

in excess of the expected ≈ 5% (≈ 20%) hyperfine correction to the quadrupole

(hexadecapole) moments, respectively.

Concentrating momentarily on the dimer-parallel measurements we find somewhat

better survival of the apparent quadrupole (k′ = 2) moment for the cartwheels com-

pared to the helicopters, though the spread in results from run to run make it difficult

to conclude this decisively. The hexadecapole alignments are for all cases severely

diminished upon scattering, and in case A (and A*) it is completely eliminated.

6.2.2 Dimer Diagonal Analysis

By analysis of the dimer-parallel results alone it is difficult to conclude much more.

As discussed in section 4.7, the apparent moment Sk′ (equation 4.59) for a given k′

contains contributions from not only the k = k′, q = 0 multipole but from multipoles

k ≥ k′, q 6= 0 as well. This means that two qualitatively different scattered density

multiplets can give rise to identical apparent moments.

There are, however, for reasons discussed in section 5.4, strong constraints en-

forced by the surface symmetry on the moments that can be generated in specu-

lar scattering of a cylindrically symmetric ensemble impinging at normal incidence.

Namely, the only cylindrically assymetric moments that the surface can induce are

those with q = 4, and of the two (k = 4, 6) possessing this property only the k = 4

moment can be detected with our (2+1)REMPI process. Further, upon rotation by

45◦ the k = 4, q = 4 multipole is negated while the q = 0 moments are unaffected.
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Schematically we could then take the difference of two polarization curves obtained

with the dimers oriented at 0◦ and 45◦ to the laser propagation directions to isolate

the contribution arising from the cylindrically assymetric component.

One requirement of course is that in both instances the incident ensemble align-

ment be identical. This implies that time elapsed between preparation of the align-

ment and scattering from the surface must be equal, otherwise the two ensembles

would have undergone different degrees of hyperfine depolarization. For this reason

if we are to make a comparison between the dimer-parallel and dimer-diagonal mea-

surements we should select run A (or A*) as the dimer-parallel counterpart to the

diagonal run E on account of the similarity in pump-probe delays (see tpi and tis in

table 6.1).

To assess the similarity of the incident alignments we have plotted them together

in figure 6.7. Though the precision of the dimer diagonal data is somewhat low we

find the two curves to overlapped to a large extent and in rough agreement with the

theoretical prediction. In light of this we consider the comparison of their scattered

alignments justified.

The associated scattered polarization scans are shown superimposed in figures

6.8a and 6.8b. As explained earlier, runs A and A* are composed of the same mea-

surements and differ in regards to the fitting technique applied to determine the

apparent moments. The technique used in A* allowed for an polarization angle offset

parameter θo different from the incident peak. This results in much better agreement

with the expected form (equation (6.1)) but suffers from the unphysical shift. Ulti-

mately which interpretation (A or A*) is to be preferred depends on the nature of

the systematic error. Since this is of course unknown to us at this time, we analyze

both cases, with the (hopeful) presumption that the true values lie between the two

limiting cases.

From qualitative inspection we find that run A differs signficantly from the dimer-

diagonal data, though the fit results are nearly identical. The situation for run A* is

opposite – the agreement between the observations appears quite high while the fits

reveal different ratios of quadrupole to hexadecapole moments between the parallel

and diagonal dimer geometries.

In terms of the qualitative implications for the molecule-surface interaction, the

run A result indicates negligible azimuthal corrugation, while from run A* might

expect a significant ρ4
4

+ component. Quantitatively, to extract the true multipole
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moments, we find the values for the three moments ρ2
0

+, ρ4
0

+, ρ4
4

+ that best solve the

following four equations:

S
(β)
k′ =

S0
k′k′ρ

k′
0

+ + σ(β)S4
k′4ρ

4
4

+

1 + σ(β)S4
k′4ρ

4
4

+

Where

• β is either ‖ or //,

• σ(β) is +1 β =‖ and -1 for β = //,

• k′ = 2, 4,

• the S
(β)
k′ are given by the fit results tabulated in table 6.1, where β =‖ corre-

sponds to runs A or A* and β = // corresponds to run E, and

• the Sqk′k are as defined in equation (4.57).

A weighted least squares fit is performed to determine the scattered moments

ρ2
0

+, ρ4
0

+, ρ4
4

+ for the two cases considered here (i.e. runs A + E and runs A* + E).

The results are shown in table 6.2. As expected from our inspection of figure 6.8, we

find that the run A analysis yields a vanishing ρ4
4

+ while the run A* analysis finds

a negative ρ4
4

+ within statistical signficance. A qualitative “goodness of fit” can be

assessed by comparing the resulting fit predictions S̄
(β)
k′ for the apparent moments to

the measured apparent moments. In all instances the error bars are found to overlap.

Briefly we consider the possibility suggested by the case A analysis of negligible

corrugation in the molecule-surface potential with the azimuthal rotational coordi-

nate φ. The observed modification of the alignment might then be attributed to

corrugation in the polar coordinate θ. However, unpublished observations made in

our lab on the scattering of vibrationally excited ν = 1 H2 from Si(100) indicate no

significant rotational (or vibrational) inelasticity. Considering only the rotational de-

grees of freedom this would imply then no change in the alignment for the cartwheels

upon scattering, since each angular momentum eigenstate |j,m〉 could only expect to

incur a phase shift upon collision, so that no change occurs in the associated density

matrix.

In the absence then of both rotationally elastic |j,m〉 → |j,m′〉,m′ 6= m reorient-

ing collisions and rotationally inelastic excitations/de-excitations, we are led to con-

sider an m-dependent diffraction probability to explain our results. In this scenario
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our scattered alignment would be found to differ from the incident by preferential

scattering of some m states away from the specular direction where we position our

probe beam. Measurements of the alignment at nonzero diffraction orders could be

expected to shed light on this hypothesis.

We conclude the section with a presentation in figure 6.9 of the resulting bond

angle probability distributions for the two cases analyzed. In particular we note the

general smoothing out of both distributions from their incident form (figure 4.4).

We can also compare the distributions to figure 5.8, the distribution calculated from

cartwheels scattering from the Brenig-Pehlke distribution (section 5.5). Clearly our

measurements do not support the model’s prediction of strong variation in the bond

angle distribution with the azimuthal coordinate.
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Figure 6.6: Polarization scans organized by run. See text for fitting procedure. In-
cluded along with the data and fits is the predicted curve for the incident molecules
(see figure 6.4 and surrounding discussion). The incident and scattered curves are

individually scaled to given an apparent moment S
(α)
0 = 1.
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Run

A* A B C* C D E

dimer ‖ ‖ ‖ ‖ ‖ ‖ //

alignment C C C H H H C

tpi (ns) 240 240 150 233 233 150 230
tis (ns) 110 110 75 72 72 85 80

S
(i)
2 0.69 0.69 0.73 -0.670 -0.670 -0.66 0.57

δS
(i)
2 0.02 0.02 0.01 0.005 0.005 0.01 0.04

S
(r)
2 0.44 0.34 0.51 -0.29 -0.31 -0.35 0.34

δS
(r)
2 0.02 0.05 0.01 0.01 0.02 0.01 0.04

S
(r)
2

S
(i)
2

0.64 0.50 0.70 0.43 0.45 0.53 0.60

δ
S
(r)
2

S
(i)
2

0.04 0.07 0.02 0.01 0.02 0.03 0.09

G2(tpi+tis)

G2(tpi)
0.93 0.93 0.96 0.95 0.95 0.95 0.95

S
(i)
4 0.16 0.16 0.26 0.19 0.19 0.17 0.28

δS
(i)
4 0.03 0.03 0.02 0.01 0.01 0.02 0.04

S
(r)
4 0.02 0.01 0.09 0.02 0.05 0.03 0.07

δS
(r)
4 0.03 0.05 0.01 0.01 0.02 0.02 0.06

S
(r)
4

S
(i)
4

0.12 0.06 0.35 0.10 0.26 0.14 0.24

δ
S
(r)
4

S
(i)
4

0.18 0.33 0.05 0.05 0.12 0.11 0.21

G4(tpi+tis)

G4(tpi)
0.75 0.75 0.89 0.86 0.86 0.89 0.83

Table 6.1: Results for j = 3 aligned scattering, organized by run. For raw data and
fits of results see figure 6.6. dimer : ‖ and // refer to the dimer-parallel and dimer-
diagonal geometries respectively. alignment : C and H refer to the cartwheeling and
helicoptering incident alignments. tpi: delay between pump laser and measurement
of incident alignment. tis: delay between measurement of incident and scattered
alignments. S

(α)
k′ : k′th apparent moment (equation (4.59)) for the direction (α). The

S
(α)
0 are fixed at unity. A leading δ indicates the error in the parameter following.

(i): incident. (r): reflected. Gk(t): depolarization factor (section D). A 10◦ shift
has been applied in the fitting procedure for the runs marked with asterisks (*) (see
figure 6.6 for illustration and text body for explanation).
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Figure 6.7: Comparison of the incident distributions for cartwheeling molecules inci-
dent on surfaces oriented in the dimer-parallel and dimer-diagonal orientation. The
prediction is calculate from the same procedure described for figure 6.4.
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Figure 6.8: Comparison of the scattered alignments of incident cartwheeling molecules
impinging on surfaces oriented in the dimer-parallel and dimer-diagonal orientation.
Figure (b) differs from (a) in that a 10◦ shift has been applied to the dimer-parallel
data to improve fit quality. Differences in the structure of the ionization curves S(θ)
for the different orientations indicate azimuthal corrugation in the molecule surface
potential.
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Runs

A + E A* + E

ρ2
0

+ −0.34± 0.03 −0.40± 0.02

ρ4
0

+ 0.04± 0.06 0.07± 0.04

ρ4
4

+ −0.03± 0.12 −0.22± 0.09

S̄
(‖)
2 0.35± 0.04 0.44± 0.03

S̄
(‖)
4 0.03± 0.04 0.02± 0.03

S̄
(//)
2 0.33± 0.04 0.34± 0.03

S̄
(//)
4 0.03± 0.04 0.07± 0.03

Table 6.2: Results from the analysis comparing scattered alignment for dimer-parallel
and dimer-diagonal geometries. The multipole moments (section 4.4.3) ρkq

+ are de-
termined from a fitting procedure described in the text. The monopole moment ρ0

0

is normalized to unity. The S̄
(β)
k′ denote the best fit predictions for the apparent mo-

ments, where β =‖ corresponds to the dimer-parallel apparent moments (runs A or
A*), while β = // indicate the dimer-diagonal apparent moments (run E). These can
be compared to the measured apparent moments Sk′ to assess goodness of fit.
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Figure 6.9: Plots of the bond angle probability distributions derived from the analysis
of scattering at different surface azimuthal orientations. The coordinate axes indicate
the lab frame directions (section 4.6). The distributions shown are those expected
for the dimer-parallel geometry. The dimer-diagonal bond angle distributions are
obtained by a rotation by 45◦ about the z axis.

123



Appendix A: Coherences in Density Operator

In this section we justify the assertion made earlier in section 4.4 concerning the

neglect of coherence terms ρnm,n′m′ , n 6= n′ in the density operator. This simplification

is applied (and so must be justified) at each discrete step in the experiment, i.e.

SMB→ pump→ surface→ probe

We proceed from the final stage to the initial.

Detection stage:

The final measurement performed on our ensemble is the net ionization yield,

which is proportional to the trace of ρion over the subspace of ionized states, where ρion

is the state of our ensemble after the probe pulse. Since the trace can be expressed

as the restricted sum of the diagonal elements of the matrix ρion
nm,n′m′ it is clearly

indepedent of any coherences.

Probe stage:

As discussed in section 2.4, the probe laser pulse ionizes ground electronic state

(≡ X) molecules via a three photon transition. Due to the resonant nature of the inter-

mediate transition, analysis can be broken up into the initial two photon intermediate

transition sending the scattered ensemble ρsc to ρE,F (named after the intermediate

E,F electronic state), and the final one photon ionizing transition sending ρE,F to ρion.

Ionization:

Ionization is only accessible to molecules excited to the E,F state by the initial

two photon stage. Therefore the only coherences in ρE,F that can contribute to trace

over the ionized subspace of ρion are between different rovibrational levels in the E,F

state. However, because the bandwidth of the probe laser is much narrower than the

separation between the X- or E,F-state energy levels, only one X↔ E,F pair of levels

will in general be resonant. Therefore no coherences in ρE,F are expected.

E,F state excitation:

A similar argument allows us to neglect any coherences in the scattered ensemble

ρsc in the determination of ρE,F. As explained, we are only interested in the portion of

ρE,F spanned by outer products of E,F states, and for a given probe laser wavelength

only one X-state rovibrational level is resonant with a rovibrational level in the E,F-
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state. Therefore the only outer products necessary to consider are between states in

that X-state rovibrational level, permitting neglect of any coherences in ρsc.

Scattering stage:

From scattering theory[62] it is known that a system beginning in an asymptotic

state, i.e. an eigenstate of the hamiltonian obtained by neglecting the scattering po-

tential, can only scatter into asymptotic states of equal energy 1. For our situation

this implies that coherences in the density operator ρin representing the ensemble im-

pinging on the surface couple only to the coherences of the scattered density operator

ρsc, which can be neglected as previously discussed.

Pump stage:

The pump stage transforms the ensemble ρSMB produced by the supersonic molec-

ular beam (SMB) to the ensemble ρin impinging on the surface. As concluded in the

previous section, coherences in ρin can be neglected.

Finally, it only remains to show that we can neglect coherence in the SMB en-

semble ρSMB. This turns out to be precluded by the stochasticity of SMB generation.

Though any given molecule in the SMB is expected to in general assume some super-

position of energy eigenstates, the phase between amplitudes of two states in different

energy levels is expected to be distributed uniformly, resulting in a coherence-free

density operator.

Note however, that the same can not in general be said of the phases in two

different states in the same energy level. It is well known[55] that the collisional

dynamics of the supersonic expansion permit alignment of molecules, i.e. nonzero

elements ρSMB
nm,nm′ , m 6= m′.

1 This assumes a static surface. However, even if we include the possibility of the inelastic
scattering, i.e. energy transfer from the surface to the molecule, we still arrive at the conclusion
that coherences in the impinging ensemble can be neglected. Suppose the surface transfers energy
to a molecule originating in the nth asymptotic energy level so that it ends up in the ñth asymptotic
energy level. Such a process will not produce interference effects for an incoming state consisting of,
say, a superposition |jn,m〉+|jñ, m̃〉, since the inelastic scattering process necessarily places the state
of the surface in a different (asymptotic) energy level than would any elastic process. Though the
molecule may end up in the ñth energy level in both processes, the total system (molecule+surface)
will be in distinguishable states and therefore no intererence can occur.
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Appendix B: Derivation of Multipole Symmetries

B.1 Symmetry properties of the angular

momentum eigenstates

For proper rotations the symmetry operations have the same behavior for the dimer-

parallel and dimer-diagonal cases (for definitions of these terms see the introduction

to chapter 5. In particular we have for the identity operation

Oe|j,m〉 = |j,m〉

while for rotations about the quantization axis we have from equation (4.5) that

Oπ|j,m〉 = (−1)m|j,m〉

and

O±π/2|j,m〉 = (∓i)m|j,m〉

In contrast with proper rotations, the action of the reflection symmetry operations

on angular momentum eigenstates is not determined by the defining relations (4.2),

(4.4) and must be worked out for the particular multiplet and dimer row orientation

under consideration.

In the following we work out the dimer-parallel case. The dimer-diagonal case

works out similarly, and the differences are discussed at the end of this appendix in

section B.3.

In the chosen reference frame we associate with the operation Ob a coordinate

transformation y → −y with x and z fixed, so that θ → θ′ = θ while φ → φ′ where

sinφ′ = − sinφ and cosφ′ = cosφ which implies φ′ = −φ. Since the φ dependence of

the spherical harmonics is fully contained in the factor eimφ we find that(
ObY

m
j

)
(θ, φ) = Y m

j (θ,−φ)

= Y m
j
∗ (θ, φ)

= (−1)mY −mj (θ, φ)

(B.1)
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or in other words

Ob|j,m〉 = (−1)m|j,−m〉

and similarly

Oa|j,m〉 = |j,−m〉

For the reflections about the diagonals we use the fact that O± = OxO±π/2 that

O±|j,m〉 = (∓i)m|j,−m〉

B.2 Symmetry properties of the state multipoles

Since the state multipoles are angular momentum eigenstates in the vector space of

operators we get the same behavior under proper rotations as we did for the |j,m〉,
i.e.:

OeT
k
q O
†
e = T kq

as well as

OπT
k
q O
†
π = (−1)qT kq

and

O±π/2T
k
q O
†
±π/2 = (∓i)qT kq

while for the reflections we must explicitly calculate their transformation properties by

expanding the state multipoles in terms of angular momentum eigenstates (equation

(4.27)) and using the reflection properties of the angular momentum eigenkets stated
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just above, i.e.

OaT
k
q O
†
a = Oa

+j∑
m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k, q)|j,m〉〈j,−m′|O†a

=

+j∑
m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k, q)Oa|j,m〉 (Oa|j,−m′〉)†

=

+j∑
m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k, q)|j,−m〉〈j,+m′|

=

+j∑
m,m′=−j

(−1)j+m
′
c(j,−m; j,+m′|k, q)|j,m〉〈j,−m′|

(!) =

+j∑
m,m′=−j

(−1)j+m
′
(−1)kc(j,m; j,−m′|k,−q)|j,m〉〈j,−m′|

= (−1)k
+j∑

m,m′=−j

(−1)j−m
′
c(j,m; j,−m′|k,−q)|j,m〉〈j,−m′|

= (−1)kT k−q

(B.2)

where in the line marked (!) we use the well known property

c(j1,m1; j2,m2|j3,m3) = (−1)j1+j2−j3c(j1,−m1; j2,−m2|j3,−m3)

. Similarly,

ObT
k
q O
†
b = (−1)k−qT k−q

and finally

O±T
k
q O
†
± = (−1)k(±i)qT k−q

The above calculations establish that the state multipoles of fixed k and |q| transform

amongst themselves under the C4v symmetry operations. To determine the symme-

tries contained in the ±q pairs, we construct their character table, shown in table

B.1.

The rows in the table can be formed by appropriate sums of rows from the char-

acter table of the irreducible representations B.2. We find that

• q = 0 ∼=

A1 k even

A2 k odd
, else
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|q|
class

Oe O±π/2 Oπ Oa
b

O±

0 1 1 1 (−1)k (−1)k

1 2 0 -2 0 0

2 2 -2 2 0 0

3 2 0 -2 0 0

4 2 2 2 0 0

5 2 0 -2 0 0

6 2 -2 2 0 0

Table B.1: C4v character table for the T k|q| ≡ (T k−q, T
k
+q) representations. Results apply

to the dimer-parallel case.

• q odd ∼= E, else

• 2q odd ∼= B1 +B2, else

• 2q even ∼= A1 + A2

For the reducible T k|q| representations (i.e. even q 6= 0) we can determine the states

of definite symmetry by applying a projection operators Pf to one of the T kq . The

operators Pf project a vector onto the subspace of states of definite f symmetry,

where f is an irreducible representation, and are constructed by the rule

Pf ≡
∑
g∈G

χf (g)Og

where χf is the character of the group operation g for the f irreducible representation.
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irrep
class

Oe O±π/2 Oπ Oa
b

O±

A1 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

Table B.2: C4v character table for the irreducible representations (irreps).

For instance, to determine what vector in the |q| = 4 subspace is a state of definite

A1 symmetry we could take q = +4 and apply the projection operator PA1 , giving

PA1T
k
4 =T k4 + (−i)4T k4 + (+i)4T k4 + (−1)4T k4

+(−1)k(T k−4 + (−1)4T k−4 + (−i)4T k−4 + (+i)4T k−4)

∝T k4 + (−1)kT k−4

∝

T k4 + k even

T k4
− k odd

(B.3)

from which we immediately obtain

PA2T
k
4 ∝

T k4 − k even

T k4
+ k odd

(B.4)
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and similarly for T k|2|:

PB1T
k
2 =T k2 − (−i)2T k2 − (+i)2T k2 + (−1)2T k2

+(−1)k(T k−2 + (−1)2T k−2 − (−i)2T k−2 − (+i)2T k−2)

∝T k2 + (−1)kT k−2

∝

T k2 + k even

T k2
− k odd

(B.5)

and likewise

PB2T
k
2 ∝

T k2 − k even

T k2
+ k odd

(B.6)

The reduction of the q = |6| representation is identical to the |q| = 2 case.

B.3 Dimer-Diagonal Case

The symmetries of the multipoles for the dimer-diagonal case can be obtained by a

45◦ = π
4

rotation. Using again equation (4.5) we find that:

• the T k0 are invariant, while

• for q = 2 or 6 we have T kq
± → −T kq ∓, i.e. B1 ↔ B2, and

• for q = 4 we have T kq
± → −T kq ± so that the symmetries are unchanged, and

• for q odd there is no change in the symmetry classification since the ±q together

span a 2-dimensional irreducible representation.

so that the dimer-parallel and dimer-diagonal cases are related by the simple exchange

B1 ↔ B2.
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Appendix C: Iterative Solution to

Time-Dependent Schrödinger Equation

Suppose we have a system evolving under a time dependent hamiltonian H(t), and

we are seeking a solution to the time-dependent Schrödinger equation:

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉

Given an N -dimensional basis |n〉 we can decompose the hamiltonian into

• a diagonal component

Ho(t) :=
N∑
n

hn(t)|n〉〈n|

where

hn(t) := 〈n|H(t)|n〉

and

• an off-diagonal component

V (t) :=
N∑

n′,n=1

vn′n(t)|n′〉〈n|

where

vn′n(t) := (1− δn′n) 〈n′|H(t)|n〉

so that

H(t) = Ho(t) + V (t) .

We then consider a perturbation expansion of the state vector

|ψ(t)〉 = |ψ(0)(t)〉+ λ|ψ(1)(t)〉+ λ2|ψ(2)(t)〉+ . . .+ λk|ψ(n)(k)〉+ . . .

where we require at some initial time to that

|ψ(k)(to)〉 = δk0|ψo〉
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Treating V (t) as a perturbation, i.e.

V (t)→ λV (t)

and matching terms in the time-dependent Schrodinger equation of equal order in λ,

we get an iterative set of equations for the coefficients c
(k)
n (t) ≡ 〈n|ψ(k)(t)〉:

i~ċ(k)
n (t) = hn(t)c(k)

n (t) +
∑
n′

vnn′c
(k−1)
n′ (t)

This equation can be cast in the following integral form:

c(k)
n (t) = eiφn(t)

(
δk0c

o
n + (i~)−1

∫ t

to

dt′e−iφn(t′)
∑
n′

vnn′(t
′)c

(k−1)
n′ (t′)

)

where con ≡ 〈n|ψo〉

φn(t) ≡ −1

~

∫ t

to

dt′hn(t′)

To handle the k = 0 case we must set c
(−1)
n (t) = 0 so that we find

c(0)
n (t) = eiφn(t)con

The solution as it is formulated here admits a simple interpretation in terms of the

scattering processes we are trying to model. The kth term |ψ(k)(t)〉 in the perturbation

expansion of |ψ(t)〉 contains k factors of V (t), the off-diagonal component of the

hamiltonian. We can interpret |ψ(k)(t)〉 then as the portion of the state arising from k

distinct “scattering events”, i.e. k transitions between the different |n〉. The minimum

number of iterations kmin required to achieve convergence can then serve as a measure

of how often the we say the state “collided” with the perturbation V (t).

The diagonal term Ho(t), in contrast, acts to shift the energy levels of the different

|n〉. If for some n′, n the transition frequency νn′n(t) ≡ hn′ (t)−hn(t)

h
matches the rate

at which the perturbation vn′n(t) oscillates, then we expect a resonant enhancement

in the scattering between the two states.

To validate the solution and illustrate its behavior we apply it to a two-state

(|+〉, |−〉) system subjected to a “Rabi-flopping” hamiltonian

H(t) =

[
~ω1

1
2
~Ωe−iω2t

1
2
~Ωeiω2t −~ω1

]
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where the driving frequency is set to resonance, i.e. ω2 = 2ω1 and the Rabi frequency

is set to a small fraction of the precession frequency, i.e. Ω = ω1

10
. The resulting evolu-

tion of the probabilities |c±(t)|2 for different iterations are shown in figure C.1. Note

how multiple iterations are necessary to capture the characteristic Rabi oscillations.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (2 )

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

|c
±

|2

Rabi Flopping computation

|c + |2, k < kmin

|c |2, k < kmin

|c + |2, k = kmin

|c |2, k = kmin

Figure C.1: Probabilities vs. time for two state system computed using perturbative
scheme described in this section. All kmin = 20 iterations are plotted to illustrate
convergence. Curves corresponding to early iterations “peel off” from the true curve
at earlier times than later iterations.
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Appendix D: Hyperfine Depolarization

The hydrogen molecule contains, in addition to the rotational angular momentum

which we have been denoting by ~J , an angular momentum ~I associated with the

combined spin of its nuclei. These angular momenta couple to one another[63], with

the result that it is not in general ~J and ~I that are individually conserved, but rather

their sum ~F ≡ ~J + ~I (see section 4.2).

To a high degree of accuracy the effect at low j can be considered to couple states

of equal rotational angular momentum j. The population of a (see section 4.4) density

multiplet ρ (i.e. ρ0
0) is thus unaffected by the coupling but the remaining moments

ρkq will in general evolve. This phenomenon is known as hyperfine depolarization.

In our experiment we study H2 molecules in the j = 3 rotational state. By

the requirement of antisymmetry the odd states j rotational states have non-zero

net nuclear spin1 and will therefore depolarize. Rutkowski and Zacharias [64]2 have

worked out the evolution ρk0(t) ≡ G(k)(j, t)ρk0(t = 0) of the cylindrically symmetric

moments for arbitrary j and k assuming an initially isotropic distribution of nuclear

spin. The “depolarization factor” G(k)(j, t) as applied to H2 for j = 3 and times

0 < t < 500ns are shown for the quadrupole (k = 2) and hexadecapole (k = 4)

moments in figure D.1. The colored regions indicate time intervals over which the

significant experiments events occur. From the figure we see that the spread in

depolarizations from measurement to measurement is mild (≈ 5%) for the quadrupole

alignments and somewhat worse (≈ 10− 15%) for the hexadecapole.

1 The even j states, however, are spin zero, and thus are immune to hyperfine depolarization.
2 Note that Rutkowski [64] uses ~N to denote the rotational angular momentum, while here we

use ~J .
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incident

scattered

surface

Figure D.1: The H2 quadrupole (k = 2) and hexadecapole (k = 4) hyperfine depo-
larization factors for j = 3. The shaded regions indicate the spread in times between
the pump and the probing of incident molecules and the following events: blue:
measurement of incident alignment, green: impact of molecules with surface, red:
measured of scattered alignment.
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[7] M. Dürr and U. Höfer, “Molecular beam investigation of hydrogen dissociation

on Si(001) and Si(111) surfaces,” Journal of Chemical Physics, vol. 121, no. 16,

pp. 8058–8067, Oct. 2004, issn: 00219606. doi: 10.1063/1.1797052 (cit. on

pp. 8, 11, 96).

137

https://doi.org/10.1063/1.443722
https://doi.org/10.1021/ja00119a024
https://pubs.acs.org/doi/10.1021/ja00119a024.
https://doi.org/10.1103/PhysRevLett.88.076107
https://doi.org/10.1080/00018739300101474
http://www.tandfonline.com/doi/abs/10.1080/00018739300101474
https://doi.org/10.1016/J.PROGSURF.2004.07.001
https://www.sciencedirect.com/science/article/pii/S0079681604000516
https://www.sciencedirect.com/science/article/pii/S0079681604000516
https://doi.org/10.1063/1.1797052


[8] K. Hata, T. Kimura, S. Ozawa, and H. Shigekawa, “How to fabricate a defect

free si(001) surface,” Journal of Vacuum Science & Technology A, vol. 18, no. 4,

pp. 1933–1936, 2000. doi: 10.1116/1.582482. eprint: https://doi.org/10.

1116/1.582482. [Online]. Available: https://doi.org/10.1116/1.582482

(cit. on p. 8).

[9] S. Y. Guo, “Dissociative attachment and reaction on silicon,” dissertation, Uni-

versity of Toronto, 2015 (cit. on p. 8).

[10] G. O. Sitz, “Gas surface interactions studied with state-prepared molecules,”

Reports on Progress in Physics, vol. 65, no. 8, pp. 1165–1193, Aug. 2002,

issn: 0034-4885. doi: 10.1088/0034- 4885/65/8/202. [Online]. Available:

http://stacks.iop.org/0034- 4885/65/i=8/a=202?key=crossref.

b37b65642057ba19e671cc9e15596b69 (cit. on p. 13).

[11] G. O. Sitz and R. L. Farrow, “Pump-probe measurements of state-to-state

rotational energy transfer rates in N2 (v=1),” The Journal of Chemical Physics,

vol. 93, no. 11, pp. 7883–7893, 1990, issn: 00219606. doi: 10.1063/1.459370

(cit. on pp. 15, 51).

[12] R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser-stimulated raman effect

and resonant four-photon interactions in gases h2, d2, and ch4,” Applied Physics

Letters, vol. 3, no. 10, pp. 181–184, 1963, issn: 00036951. doi: 10.1063/1.

1753840 (cit. on p. 16).

[13] N. Bloembergen, “The Stimulated Raman Effect,” American Journal of Physics,

vol. 35, no. 11, pp. 989–1023, Nov. 1967, issn: 0002-9505. doi: 10.1119/1.

1973774 (cit. on p. 16).

[14] K. P. Huber and G. H. Herzberg, “Nist chemistry webbook, nist standard refer-

ence database number 69,” in, P. Linstrom and W. Mallard, Eds. 2019, ch. Con-

stants of Diatomic Molecules (cit. on pp. 17, 22).

[15] R. W. Minck, E. E. Hagenlocker, and W. G. Rado, “Stimulated pure rotational

raman scattering in deuterium,” Physical Review Letters, vol. 17, no. 5, pp. 229–

231, 1966, issn: 00319007. doi: 10.1103/PhysRevLett.17.229 (cit. on p. 16).

[16] A. E. Siegman, Lasers. University Science Books, 1986 (cit. on p. 18).

[17] R. W. Boyd, Nonlinear Optics, Third Edition, 3rd. Orlando, FL, USA: Aca-

demic Press, Inc., 2008, isbn: 0123694701, 9780123694706 (cit. on p. 18).

138

https://doi.org/10.1116/1.582482
https://doi.org/10.1116/1.582482
https://doi.org/10.1116/1.582482
https://doi.org/10.1116/1.582482
https://doi.org/10.1088/0034-4885/65/8/202
http://stacks.iop.org/0034-4885/65/i=8/a=202?key=crossref.b37b65642057ba19e671cc9e15596b69
http://stacks.iop.org/0034-4885/65/i=8/a=202?key=crossref.b37b65642057ba19e671cc9e15596b69
https://doi.org/10.1063/1.459370
https://doi.org/10.1063/1.1753840
https://doi.org/10.1063/1.1753840
https://doi.org/10.1119/1.1973774
https://doi.org/10.1119/1.1973774
https://doi.org/10.1103/PhysRevLett.17.229


[18] M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular

species,” Annual Review of Physical Chemistry, vol. 45, no. 1, pp. 57–82, 1994.

doi: 10.1146/annurev.pc.45.100194.000421. eprint: https://doi.org/

10.1146/annurev.pc.45.100194.000421. [Online]. Available: https://doi.

org/10.1146/annurev.pc.45.100194.000421 (cit. on p. 18).

[19] M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln,” Annalen der

Physik, vol. 389, no. 20, pp. 457–484, 1927. doi: 10.1002/andp.19273892002.

eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / andp .

19273892002. [Online]. Available: https://onlinelibrary.wiley.com/doi/

abs/10.1002/andp.19273892002 (cit. on pp. 22, 35).

[20] J. I. Steinfeld, Molecules and radiation : an introduction to modern molecular

spectroscopy. MIT Press, 1978, p. 348, isbn: 9780262690591 (cit. on p. 22).

[21] T. E. Sharp, “Potential-energy curves for molecular hydrogen and its ions,”

Atomic Data and Nuclear Data Tables, vol. 2, no. C, pp. 119–169, Dec. 1970,

issn: 10902090. doi: 10.1016/S0092-640X(70)80007-9. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0092640X70800079

(cit. on p. 22).

[22] E. R. Davidson, First excited 1Σ+
g state of H2. A double-minimum problem,

1960. doi: 10.1063/1.1731444 (cit. on p. 23).

[23] F. Duarte, “NARROW-LINEWIDTH PULSED DYE LASER OSCILLATORS,”

in Dye Laser Principles, Elsevier, 1990, pp. 133–183. doi: 10.1016/b978-0-

12-222700-4.50009-7 (cit. on p. 27).

[24] N. K. Sinha, “Normalised dispersion of birefringence of quartz and stress optical

coefficient of fused silica and plate glass,” Physics and Chemistry of Glasses,

vol. 19, no. 4, pp. 69–77, 1978 (cit. on p. 30).

[25] ”Physical Constants of Organic Compounds,” in CRC Handbook of Chemistry

and Physics, 100th Edition (Internet Version 2019), John R. Rumble, ed., CRC

Press/Taylor & Francis, Boca Raton, FL. (cit. on p. 32).

[26] G. R. Darling and S. Holloway, “The dissociation of diatomic molecules at

surfaces,” Reports on Progress in Physics, vol. 58, no. 12, pp. 1595–1672, Dec.

1995. doi: 10.1088/0034- 4885/58/12/001. [Online]. Available: https:

//doi.org/10.1088%2F0034-4885%2F58%2F12%2F001 (cit. on p. 42).

139

https://doi.org/10.1146/annurev.pc.45.100194.000421
https://doi.org/10.1146/annurev.pc.45.100194.000421
https://doi.org/10.1146/annurev.pc.45.100194.000421
https://doi.org/10.1146/annurev.pc.45.100194.000421
https://doi.org/10.1146/annurev.pc.45.100194.000421
https://doi.org/10.1002/andp.19273892002
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19273892002
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19273892002
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19273892002
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19273892002
https://doi.org/10.1016/S0092-640X(70)80007-9
https://www.sciencedirect.com/science/article/pii/S0092640X70800079
https://doi.org/10.1063/1.1731444
https://doi.org/10.1016/b978-0-12-222700-4.50009-7
https://doi.org/10.1016/b978-0-12-222700-4.50009-7
https://doi.org/10.1088/0034-4885/58/12/001
https://doi.org/10.1088%2F0034-4885%2F58%2F12%2F001
https://doi.org/10.1088%2F0034-4885%2F58%2F12%2F001


[27] I. Estermann and O. Stern, “Beugung von molekularstrahlen,” Zeitschrift für

Physik, vol. 61, no. 1, pp. 95–125, Jan. 1930, issn: 0044-3328. doi: 10.1007/

BF01340293. [Online]. Available: https://doi.org/10.1007/BF01340293

(cit. on p. 34).

[28] G. J. Kroes and C. Dı́az, Quantum and classical dynamics of reactive scattering

of H2 from metal surfaces, Jul. 2016. doi: 10.1039/c5cs00336a (cit. on pp. 34,

35, 97, 99).

[29] A. M. Wodtke, “Electronically non-adiabatic influences in surface chemistry and

dynamics,” Chem. Soc. Rev., vol. 45, pp. 3641–3657, 13 2016. doi: 10.1039/

C6CS00078A. [Online]. Available: http://dx.doi.org/10.1039/C6CS00078A

(cit. on p. 35).

[30] J. C. Polanyi and W. H. Wong, “Location of energy barriers. i. effect on the

dynamics of reactions a + bc,” The Journal of Chemical Physics, vol. 51, no. 4,

pp. 1439–1450, 1969. doi: 10.1063/1.1672194. eprint: https://doi.org/10.

1063/1.1672194. [Online]. Available: https://doi.org/10.1063/1.1672194

(cit. on p. 36).

[31] R. R. Smith, D. R. Killelea, D. F. DelSesto, and A. L. Utz, “Preference for vi-

brational over translational energy in a gas-surface reaction,” Science, vol. 304,

no. 5673, pp. 992–995, 2004, issn: 0036-8075. doi: 10.1126/science.1096309.

eprint: https://science.sciencemag.org/content/304/5673/992.full.

pdf. [Online]. Available: https://science.sciencemag.org/content/304/

5673/992 (cit. on pp. 38, 39).

[32] A. JOSHI, L. DAVIS, and P. PALMBERG, “Chapter 5 - auger electron spec-

troscopy,” in Methods of Surface Analysis, ser. Methods and Phenomena, A.

CZANDERNA, Ed., Amsterdam: Elsevier, 1975, pp. 159–222. doi: https://

doi.org/10.1016/B978-0-444-41344-4.50012-4. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/B9780444413444500124

(cit. on p. 38).

[33] D. R. Killelea, V. L. Campbell, N. S. Shuman, and A. L. Utz, “Bond-selective

control of a heterogeneously catalyzed reaction,” Science, vol. 319, no. 5864,

pp. 790–793, 2008, issn: 0036-8075. doi: 10.1126/science.1152819. eprint:

https://science.sciencemag.org/content/319/5864/790.full.pdf.

140

https://doi.org/10.1007/BF01340293
https://doi.org/10.1007/BF01340293
https://doi.org/10.1007/BF01340293
https://doi.org/10.1039/c5cs00336a
https://doi.org/10.1039/C6CS00078A
https://doi.org/10.1039/C6CS00078A
http://dx.doi.org/10.1039/C6CS00078A
https://doi.org/10.1063/1.1672194
https://doi.org/10.1063/1.1672194
https://doi.org/10.1063/1.1672194
https://doi.org/10.1063/1.1672194
https://doi.org/10.1126/science.1096309
https://science.sciencemag.org/content/304/5673/992.full.pdf
https://science.sciencemag.org/content/304/5673/992.full.pdf
https://science.sciencemag.org/content/304/5673/992
https://science.sciencemag.org/content/304/5673/992
https://doi.org/https://doi.org/10.1016/B978-0-444-41344-4.50012-4
https://doi.org/https://doi.org/10.1016/B978-0-444-41344-4.50012-4
http://www.sciencedirect.com/science/article/pii/B9780444413444500124
http://www.sciencedirect.com/science/article/pii/B9780444413444500124
https://doi.org/10.1126/science.1152819
https://science.sciencemag.org/content/319/5864/790.full.pdf


[Online]. Available: https://science.sciencemag.org/content/319/5864/

790 (cit. on pp. 38, 40).

[34] A. D. Johnson, S. P. Daley, A. L. Utz, and S. T. Ceyer, “The chemistry of

bulk hydrogen: Reaction of hydrogen embedded in nickel with adsorbed ch3,”

Science, vol. 257, no. 5067, pp. 223–225, 1992, issn: 0036-8075. doi: 10 .

1126/science.257.5067.223. eprint: https://science.sciencemag.org/

content/257/5067/223.full.pdf. [Online]. Available: https://science.

sciencemag.org/content/257/5067/223 (cit. on p. 38).

[35] H. L. Abbott, A. Bukoski, and I. Harrison, “Microcanonical unimolecular rate

theory at surfaces. ii. vibrational state resolved dissociative chemisorption of

methane on ni(100),” The Journal of Chemical Physics, vol. 121, no. 8, pp. 3792–

3810, 2004. doi: 10.1063/1.1777221. eprint: https://doi.org/10.1063/1.

1777221. [Online]. Available: https://doi.org/10.1063/1.1777221 (cit. on

p. 39).

[36] C. Crespos, H. F. Busnengo, W. Dong, and A. Salin, “Analysis of H2 dissocia-

tion dynamics on the Pd(111) surface,” Journal of Chemical Physics, vol. 114,

no. 24, pp. 10 954–10 962, Jun. 2001, issn: 00219606. doi: 10.1063/1.1375153

(cit. on p. 45).

[37] M. Gostein and G. O. Sitz, “Rotational state-resolved sticking coefficients for

H2 on Pd(111): Testing dynamical steering in dissociative adsorption,” The

Journal of Chemical Physics, vol. 106, no. 17, pp. 7378–7390, May 1997, issn:

0021-9606. doi: 10.1063/1.473699 (cit. on pp. 46, 47).

[38] W. A. Diño, H. Kasai, and A. Okiji, Orientational effects in dissociative ad-

sorption/associative desorption dynamics of H2(D2) on Cu and Pd, 2000. doi:

10.1016/S0079-6816(99)00019-2 (cit. on p. 47).

[39] R. H. Fowler and E. A. Milne, “A note on the principle of detailed balancing,”

Proceedings of the National Academy of Sciences, vol. 11, no. 7, pp. 400–402,

1925, issn: 0027-8424. doi: 10 . 1073 / pnas . 11 . 7 . 400. eprint: https : / /

www.pnas.org/content/11/7/400.full.pdf. [Online]. Available: https:

//www.pnas.org/content/11/7/400 (cit. on p. 46).

141

https://science.sciencemag.org/content/319/5864/790
https://science.sciencemag.org/content/319/5864/790
https://doi.org/10.1126/science.257.5067.223
https://doi.org/10.1126/science.257.5067.223
https://science.sciencemag.org/content/257/5067/223.full.pdf
https://science.sciencemag.org/content/257/5067/223.full.pdf
https://science.sciencemag.org/content/257/5067/223
https://science.sciencemag.org/content/257/5067/223
https://doi.org/10.1063/1.1777221
https://doi.org/10.1063/1.1777221
https://doi.org/10.1063/1.1777221
https://doi.org/10.1063/1.1777221
https://doi.org/10.1063/1.1375153
https://doi.org/10.1063/1.473699
https://doi.org/10.1016/S0079-6816(99)00019-2
https://doi.org/10.1073/pnas.11.7.400
https://www.pnas.org/content/11/7/400.full.pdf
https://www.pnas.org/content/11/7/400.full.pdf
https://www.pnas.org/content/11/7/400
https://www.pnas.org/content/11/7/400


[40] H. A. Michelsen, C. T. Rettner, D. J. Auerbach, and R. N. Zare, “Effect of

rotation on the translational and vibrational energy dependence of the disso-

ciative adsorption of D2 on Cu(111),” The Journal of Chemical Physics, vol. 98,

no. 10, pp. 8294–8307, 1993, issn: 00219606. doi: 10.1063/1.464535 (cit. on

p. 47).

[41] S. F. Shane, K. W. Kolasinski, and R. N. Zare, Recombinative desorption of

H2 on Si(100)-(2X1) and Si(111)-(7X7): Comparison of internal state distri-

butions, 1992. doi: 10.1063/1.463228 (cit. on pp. 48, 49).

[42] D. Wetzig et al., “Rotational Alignment in Associative Desorption of D2 (v′′ =

0 and 1) from Pd (100),” Physical Review Letters, vol. 76, no. 3, pp. 463–466,

1996, issn: 10797114. doi: 10.1103/PhysRevLett.76.463 (cit. on pp. 48–50).

[43] S. J. Gulding et al., “ Alignment of D 2 ( v , J ) desorbed from Cu(111): Low

sensitivity of activated dissociative chemisorption to approach geometry,” The

Journal of Chemical Physics, vol. 105, no. 21, pp. 9702–9705, Dec. 1996, issn:

0021-9606. doi: 10.1063/1.472979 (cit. on pp. 48–50).

[44] G. O. Sitz and R. L. Farrow, “Preparation and decay of alignment in n2 (v=1),”

The Journal of Chemical Physics, vol. 101, no. 6, pp. 4682–4687, 1994. doi:

10.1063/1.467457. eprint: https://doi.org/10.1063/1.467457. [Online].

Available: https://doi.org/10.1063/1.467457 (cit. on pp. 50, 51).

[45] M. Kurahashi and Y. Yamauchi, “Production of a single spin-rotational state

[(J,M) = (2,2)] selected molecular oxygen (3Σg -) beam by a hexapole magnet,”

Review of Scientific Instruments, vol. 80, no. 8, 2009, issn: 00346748. doi:

10.1063/1.3206299 (cit. on p. 51).

[46] ——, “Huge steric effects in surface oxidation of Si(100),” Physical Review B,

vol. 85, no. 16, p. 161 302, Apr. 2012, issn: 1098-0121. doi: 10.1103/PhysRevB.

85.161302. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevB.85.161302 (cit. on pp. 52, 53).

[47] D. A. King and M. G. Wells, “Molecular beam investigation of adsorption kinet-

ics on bulk metal targets: Nitrogen on tungsten,” Surface Science, vol. 29, no. 2,

pp. 454–482, Feb. 1972, issn: 0039-6028. doi: 10.1016/0039-6028(72)90232-

4. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/0039602872902324 (cit. on p. 53).

142

https://doi.org/10.1063/1.464535
https://doi.org/10.1063/1.463228
https://doi.org/10.1103/PhysRevLett.76.463
https://doi.org/10.1063/1.472979
https://doi.org/10.1063/1.467457
https://doi.org/10.1063/1.467457
https://doi.org/10.1063/1.467457
https://doi.org/10.1063/1.3206299
https://doi.org/10.1103/PhysRevB.85.161302
https://doi.org/10.1103/PhysRevB.85.161302
https://link.aps.org/doi/10.1103/PhysRevB.85.161302
https://link.aps.org/doi/10.1103/PhysRevB.85.161302
https://doi.org/10.1016/0039-6028(72)90232-4
https://doi.org/10.1016/0039-6028(72)90232-4
https://www.sciencedirect.com/science/article/pii/0039602872902324
https://www.sciencedirect.com/science/article/pii/0039602872902324


[48] B. L. Yoder, R. Bisson, P. Morten Hundt, and R. D. Beck, “Alignment de-

pendent chemisorption of vibrationally excited CH 4( 3) on Ni(100), Ni(110),

and Ni(111),” Journal of Chemical Physics, vol. 135, no. 22, Dec. 2011, issn:

00219606. doi: 10.1063/1.3665136 (cit. on pp. 52, 54).

[49] O. Godsi et al., “A general method for controlling and resolving rotational ori-

entation of molecules in molecule-surface collisions,” Nature Communications,

vol. 8, no. 1, p. 15 357, Aug. 2017, issn: 2041-1723. doi: 10.1038/ncomms15357.

[Online]. Available: http://www.nature.com/articles/ncomms15357 (cit. on

pp. 53, 55).

[50] G. H. Condon E. U. & Shortley, “Angular momentum,” in The Theory of

Atomic Spectra. Cambridge University Press, 1935, ch. 3, p. 48 (cit. on p. 59).

[51] Vazirani, Umesh, Hilbert spaces, tensor products, 2019. [Online]. Available:

http://www-inst.eecs.berkeley.edu/~cs191/sp05/lectures/lecture3.

pdf (cit. on p. 60).

[52] J. J. Sakurai and J. Napolitano, “Theory of angular momentum,” in Modern

Quantum Mechanics, 2nd ed. Cambridge University Press, 2017, pp. 157–261.

doi: 10.1017/9781108499996.007 (cit. on p. 60).

[53] C. Eckart, “The application of group theory to the quantum dynamics of

monatomic systems,” Rev. Mod. Phys., vol. 2, pp. 305–380, 3 Jul. 1930. doi:

10.1103/RevModPhys.2.305. [Online]. Available: https://link.aps.org/

doi/10.1103/RevModPhys.2.305 (cit. on p. 65).

[54] B. R. Judd, “Tensor algebra,” in Angular Momentum Theory for Diatomic

Molecules. Academic Press, Jan. 1975, ch. 1, pp. 1–25, isbn: 978-0-12-391950-2.

doi: 10.1016/B978-0-12-391950-2.50004-9. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/B9780123919502500049

(cit. on p. 66).

[55] L. Vattuone et al., “Interaction of rotationally aligned and of oriented molecules

in gas phase and at surfaces,” Progress in Surface Science, vol. 85, no. 1-4,

pp. 92–160, Jan. 2010, issn: 0079-6816. doi: 10.1016/J.PROGSURF.2009.

12.001. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0079681609000781 (cit. on pp. 79, 125).

143

https://doi.org/10.1063/1.3665136
https://doi.org/10.1038/ncomms15357
http://www.nature.com/articles/ncomms15357
http://www-inst.eecs.berkeley.edu/~cs191/sp05/lectures/lecture3.pdf
http://www-inst.eecs.berkeley.edu/~cs191/sp05/lectures/lecture3.pdf
https://doi.org/10.1017/9781108499996.007
https://doi.org/10.1103/RevModPhys.2.305
https://link.aps.org/doi/10.1103/RevModPhys.2.305
https://link.aps.org/doi/10.1103/RevModPhys.2.305
https://doi.org/10.1016/B978-0-12-391950-2.50004-9
https://www.sciencedirect.com/science/article/pii/B9780123919502500049
https://www.sciencedirect.com/science/article/pii/B9780123919502500049
https://doi.org/10.1016/J.PROGSURF.2009.12.001
https://doi.org/10.1016/J.PROGSURF.2009.12.001
https://www.sciencedirect.com/science/article/pii/S0079681609000781
https://www.sciencedirect.com/science/article/pii/S0079681609000781


[56] W. R. Sanders and J. B. Anderson, “Alignment of molecular iodine rotation in

a seeded molecular beam,” The Journal of Physical Chemistry, vol. 88, no. 20,

pp. 4479–4484, Sep. 1984, issn: 0022-3654. doi: 10.1021/j150664a006. [On-

line]. Available: http://pubs.acs.org/doi/abs/10.1021/j150664a006

(cit. on p. 79).

[57] W. Brenig and E. Pehlke, “Reaction dynamics of H2 on Si. Ab initio supported

model calculations,” Progress in Surface Science, vol. 83, no. 5-6, pp. 263–336,

2008, issn: 00796816. doi: 10.1016/j.progsurf.2008.06.001 (cit. on pp. 95,

98, 103).

[58] W. Brenig, A. Gross, and R. Russ, “Detailed balance and phonon assisted

sticking in adsorption and desorption of H2/Si,” Zeitschrift für Physik B Con-

densed Matter, vol. 96, no. 2, pp. 231–234, Jun. 1994, issn: 07223277. doi:

10.1007/BF01313289 (cit. on p. 96).
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