CH341 - Exercises Week 1

1.1 The total interaction energy of two molecules (or atoms) is described by the Lennard-Jones potential:

$$V(r) = \frac{C_1}{r^{12}} - \frac{C_2}{r^6} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

- What is the relation between parameters C_1 , C_2 and parameters ε , σ ?

 Calculate the minimum potential energy between two molecules (or atoms) and the distance that corresponds to this minimum.
- For argon the parameters are as following: $\sigma=3.4\cdot 10^{-10}\,\mathrm{m}$ et $\varepsilon=1.65\cdot 10^{-21}\,\mathrm{J}$. Calculate the value of the potential energy at the minimum and the corresponding distance between argon atoms.
- **1.2** Calculate the surface tension work done when spherical droplets with an average radius of 1.0×10^{-3} mm agglomerate to form a sphere of 1 litre of water at 20°C. The surface tension of water is 72.8×10^{-3} J/m² at 20°C.
- **1.3** Droplets of mercury are deposited on a glass plate. What is the pressure difference between the inside and the outside of a droplet (supposed to be spherical) if its diameter is 1 mm or 0.1 mm? ($\gamma_{Hg} = 484 \text{ mNm}^{-1}$ at $T = 20 \,^{\circ}\text{C}$). What fraction of an atmosphere does this difference in pressure represent?