
CH-242(b) - Week 5 exercise solutions

Lippmann’s ∆P vs. e curve
a)
The pressure at the water side of the meniscus is just atmospheric pressure
Po = 1atm since it is at the same elevation as the flat water-air interface. The
pressure at the mercury side is Po + ∆p + ρHggh where ∆p = 0, h = 750mm,
g = 9.8m s−2, and ρHg = 13.5 g cm−3 is the volumetric mass density of mercury.
The pressure difference is thus ρHggh. You can plug the numbers in or note that
mmHg is a unit of measure representing the hydrostatic pressure of a column of
mercury 1mm in height, with a conversion factor of 760mmHg = 1 atm so the
pressure difference at the meniscus is about 1 atm.
b)

Because the pressure in the mercury is greater than in the water, the meniscus
must curve in towards the mercury. This is also consistent with the known
fact that mercury does not wet glass and so will try to minimize the glass-
mercury surface area by forming a low ≈ 0◦ contact angle. What would happen
if mercury wetted glass more strongly than water?
c)
From the Laplace-Young equation we have

∆P = 2γ/r

where, from our assumption of a zero contact angle, r represents bot the radius
of curvature of the meniscus as well as the radius of the capillary. Solving for r
we get:

r = 2× 0.415Nm−1/1× 105 Pa ≈ 1× 10−5 m = 10µm
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very small!
d)
If the surface tension is 415mNm−1 when ∆P = 750mmHg, and the menis-
cus radius of curvature is fixed because its elevation is fixed and we always
assume perfect wetting, then for an added pressure ∆p of 111mmHg at V =
0.140Daniell ≈ 0.154V we get a surface tension of

γ =
750mmHg + 111mmHg

750mmHg
415mNm−1 ≈ 746mNm−1

e)
From inspection of the table:

σ =
dγ

d∆V
≈

(131mmHg − 111mmHg)× 0.415Nm−1

750mmHg

(0.170Daniell− 0.140Daniell)× 1.1V
1Daniell

≈ +0.3Cm−2

or what amounts to roughly one elementary charge per each 7 Å×7 Å square at
the interface. Considering that mercury atoms themselves have a diameter of
roughly 3 Å, this suggests a rather dense concentration of excess charge at the
interface. Check the defintions of Σ and ∆V from the lecture notes to make sure
the positive sign is correct. A positive surface charge density on the mercury
side near ∆V = 0 is consistent with selective adsorption of negatively charged
anions on the aqueous side of the interface.
f)

The surface charge goes to zero at the voltage Vpzc when σ = dγ
d∆V = 0, i.e.

where the curve reaches a maximum, which from inspection of the table appears
to occur around 0.905Daneill.
g)

cA = − d2γ
d∆v2 . This can be numerically approximated by “the change in the slope

over the change in the voltage”. Picking two pairs of points near the maximum
at Vpzc with significant slopes we get:

cA = −

(
(301−353)mmHg

(1.261−1.000)Daniell −
(356.5−314)mmHg

(0.833−0.588)Daniell

)
× 1Daniell

1.1V(
1
2 × (1.261 + 1.000)− 1

2 × (0.833 + 0.588)
)
Daniell× 1.1V

1Daniell

×0.415Nm−1

750mmHg

or
cA ≈ 0.41Fm−2

h)
If the acid solution is roughly 6 parts water to 1 part sulphuric acid by volume,
and one liter of sulphuric acid is 1.83× 103 g L−1/98 gmol−1 ≈ 19mol L−1 then
the solution is roughly 3M. If we assume that all the H2SO4 molecules dissociate
into H+ and HSO4

– , then that gives a background concentration co of 3M with
a valency z = 1. To save a little work, from the notes we have, for monovalent
aqueous solution at room temperature:

λH2O
D = 3.04 Å/

√
co ≈ 2 Å
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A layer with such a thickness can hardly be considered “diffuse”! Forging ahead
in any case, from λD we can get the differential capacitance cA via

cA = εrεo/λD ≈ 80× 8.9× 10−12 Fm−1/2× 10−10 m = 3.56Fm−2

which compares reasonably well with the value implied by analysis of the elec-
trocapillary curve.
i)
From the lecture notes we have

∆ϕ = σλD/εrεo

but
d2ϕ

dz2
(z = 0) = ∆ϕ/λ2

D = −F∆co/εrεo

so

∆co = − σ

FλD
= − 0.3Cm−2

9.6× 104 Cmol−1 × 2× 10−10 m
≈ −15.6M

So the simplified equations derived in class predict a max deviation ∆co that is
not only not much smaller than the mean, but is in fact larger, in violation of
the assumption |∆co| ≪ co used to derive the expression for ∆co. We do not
expect therefore to get very accurate results from application of our “linearized”
equations. Interested readers can refer to section 4.2 of Physics and Chemistry
of Interfaces by Butt et al. (3rd edition) for a more general solution to the
diffuse layer problem which does not assume |∆co| ≪ co.
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