LECTURE 2 [WEEK 3]

. THERMODYNAMICS OF SURFACES

. References

· PHYS. & CHEM. OF 1.F. (BUTT 27 AL.) · CH. 3: THERMO.

· CH. 11, SEC. 2 : MICELLES

PT. 1: THERMODYNAMICS REFRESHERT

. STATE VARIABLES

A THERMODYNAMIC SYSTEM IS

CHARACTERISED BY A COLLECTION

OF "STATE VARIABLES" WHICH

ARE MEASURABLE AND TO SOME

EXTENT CONTROLLABLE PROPERTIES

* FOR FULL TREATMENT, SEE "THERMODYNAMICS" BY H. CALLEN

of THE SYSTEM IN Equilibrium

- · FOR SIMPLE SYSTEMS LIKE

 PURE GASES & LIQUIDS THESE

 STATE MARIABLES WILL INCLUDE:
 - · volume (v)
 - · more numser (N)
- · STATE VARIABLES ARE
 "EXTENSIVE" IN THE SENSE THAT
 DOUBLING THE SYSTEM REQUIRES
 DOUBLING THE VALUES OF THE
 STATE VARIABLES.
- · ENTROPY
 - · AMONG THE STATE VARS IS

 ALWAYS INCLUDED A VAR S

 CALLED THE ENTROPY WHOSE

 PROPERTIES WILL BE EXPLAINED

BELOW.

· ENERGY

· FOR ANY T.D. SYSTEM W/

STATE GARIABLES X1, X2, ..., XN

THERE IS A FUNCTION CALLED

THE "ENERGY":

u(x1,...,xn)

WHICH IS ALSO EXTENSIVE IN

THAT: U(2x1, ..., 2xn)

· 157 LAW of T.D.

THE CHANGE IN THE ENERGY

OF A SYSTEM DU AFTER

UNDERGOINT SOME CHANGE

is Equal 70 THE Sum of:

· THE WORK DW DONE BY
THE SURROUNDINGS ON
THE SYSTEM, AND

THE HEAT DQ ABSORBED

BY THE SYSTEM FROM

THE SUREDUNDINGS:

LOU = DW + DQ [1ST LAW]
HEAT & WORK

· 17 IS IN GRATERAL POSSIBLE TO INSULATE A SYSTEM FROM 175 SURROUNDINGS SO THAT DQ = 0 DURING SOME PROCESS.

Such processes ARE CAURD

"ADIABATIC".

· GIVEN TWO T.D. STATES A & B,

17 IS TRUE THAT EITHER:

· AN ADIABATIC PROCESS EXISTS
WHICH TRANSFORMS A -> B

" " " "

" $\beta \rightarrow A$.

· Since Work [E.G. FAX]

CAN BE MEASURED, THIS

MEANS SUSERA D'RESERVESS

Du = uA - uB CAN BE

MEASURED.

P = PAOX
= PAV

DW = TDRAG X DO + Trans DW= y2st . MOTE HERE THAT WE CAN

> · THIS ALSO THEN PERMITS THE MEASUREMENT OF HEAT TRANSFER DQ DIRING SOME NON-ADIABATIC PROCESS DQ = DU - DW

"HEAT up" A SYSTEM WIT OUT ABSORBING HEAT (DQ = 0]!

· 2.6. WE CAN INCREASE THE ENTERMY OF A LIQUID ZITHER

= DWADIABATIC - DW

BY STIRRING ADIABATICALLY OR HEATING W/ A FLAME.

- · DIFF ERENTIALS
 - · differentials DESCRIBE HOW

 To compare THE VALUES OF

 A FUNCTION EVALUATED @ TWO

NSUS BA boins:

(X1,41) = (X0,40)= (X2,42)

· Similary WE CAN WRITE FOR THE T.D. ENERGY U(S, V, N):

du = TdS-PW+mdN,

T = DU TEMPERATURE P = - Du | pressure m = 20/2/2 " CHEMICAL POTENTIAL"

- · ZND LAW OF T.D.
 - · THE 2nd LAW RELATES THE
 ABSTRACT NOTIONS OF ENTROPT
 A HEAT. IT STATES:
- · FOR ANY PROCESS WE HAVE:

 TOS 2 DQ [2ND LAW]
 - · ASSERTING T 70 THEN

 GIVES AS 20 FOR

 ADIABATIC PROCESSES.
 - · WHEN WE HAVE EQUALITY,
 i.e. TOS = DQ, WE TALK
 ABOUT A "QUASI-STATIC

PROCESS.

· FOR QUASI-STATIC PROCESSES WE HAVE:

 $\Delta W = \Delta U - \Delta Q = \Delta U - T \Delta S$ $= T \Delta S - P \Delta V + \mu \Delta N - T \Delta S$

= -Pay + Man

· or, for "crosed" systems

DW = -PW

· QUASI-STATIC PROCESSES

ARE THOSE WHICH ARE
SUFFICIENTLY SLOW THAT THE
SYSTEM REMAINS FOR ALL
TIMES ARBITRARILY CLOSE
TO Equilibrium.

· EXAMPLES:

· ADIABATIC COMPRESSION

of Gas:

+<u>AP</u> P

. sp -- 0:

. QUASI - STATIC

GAS DENSITY REMAINS

UNIFORM THROUGHOUT

COMPRESSION. O (ADIABATIC) . DU = DW + DQ

 $= -\left(P + \Delta P\right) \Delta V \rightarrow -P \Delta V$

· \$P --> 0:

. VIOLENT compression

SZIS UP PRESSURE GRADIENTS:

· "EXTRA" ENERGY AP AV PUT 1NTO SYSTEM IN FORM OF PRESSURE GRADIENT · THIS GRADIENT CREATES WAVES INSIDE GAS WAICH GAS DISSIPATE AND LEAD TO INCREASE IN ENTROPY DS = DPAY/T @ EquiliBRIUM ADIABATIC STIRRING OR Joule (12/R) HEATING: · BU = BW > 0 BuT: · 6N = 0 . DV = 0 TOS = OU + PAN - MAN STATIC.

· SURFACE TENSION, PENISITED · FOR SINGLE - COMPONENT [1.2. \$ 50 LUTES] GAS-Liquio interpace WE HAVE AS STATE WARIABLES JUST 748 Surface Entropy S AND THE SURFACE AREA A: du = Tds + odA

T = Du/ DS/A = DA/s

FOR SOME PROCESS PRODUCIULA
A CHANGE DA M THE INTER-

DW = DU - DQ = TDS + 0 DA - DQ

FACIAL ARGA WE HAVE:

VIA Z D AA

· But!

. WE ALREADY AGREED THAT

THE COEFFICIENT RELATIVE

A CHANGE IN SURCES AREA

A CHANGE IN SURFACE AREA

AP TO SOME MINIMUM

WECESSARY WORK DW WAS

(< = o = Juls)

Surpace 72NSION 8:

· TEMPERATURE

· TO FINISH OUR RECAP OF

GENERAL T.D., [57'S

JUSTIFY OUR USE OF THE WORD TEMPSEATURE AS A NAME FOR DU/V,N. · CONSIDER TWO RIGIO CONTAINERS

THAT ARE THREMALLY ISOLATED FROM

THE OUTSIDE WORLD BUT CAN

EXCHANGE ENTELLY BETWEEN EACH

OTHER:

A B

= AY + AG

 $\Delta U = \Delta U + \Delta R = 0$ $(\neq \omega \circ e \times) \circ (ADIABATIC)$ $= \Delta U_A + \Delta U_B \Longrightarrow \Delta U_B = -\Delta U_A$ $\Delta U = T \Delta S = D \Delta V_A + \mu_A \Delta V_A$

 $\Delta U_{A} = T_{A} \Delta S_{A} - P_{A} \Delta V_{A} + \mu_{A} \Delta V_{A}$ $= T_{A} \Delta S_{A} \qquad (cosso)$ $L_{B} = T_{B} \Delta S_{B} = -T_{A} \Delta S_{A}$

 $\Delta U_{B} = T_{B} \Delta S_{B} = -T_{A} \Delta S_{A}$ $(\Delta U_{B} = -\Delta U_{A})$ $(\Delta U_{B} = -\Delta U_{A})$ $(\Delta U_{B} = -\Delta U_{A})$

AS = ASA + ASB = ASA (1 - TA) ? O (ZMD) AUA = TAASA ? O HEAT FLOWS FROM

IF TA < TB > HOT TO COLD!

. WHILE THE 2 D LAW AS WE STATED IT ONLY PLACED A CONSTRAINT ON ADIABATIC peocesses (DS 20), WE CAN IN FACT MAKE A STRONGER STATEMENT: ANY ADIABATICALLY ISOLATED System will SpontAntously

ANY ADIABATICALLY ISOLATED
SYSTEM WILL SPONTANEOUSLY
EVOLUTE OUTER ITS LINCONSTRAINED STATE MARIABLES
IN ORDER TO MAXIMITE

175 ENTROPY

. W/ THE EXAMPLE WE JUST WORKED THROUGH WE SAW HOW A COMPOSITE SYSTEM WILL

EXCHANGE ENERGY (THE DIFFERENCE

UB-UA WAS UNCONSTRAINED WHILE

THE SUM UA+UB WAS FIXED)

UNTIL TA = TB.

· Similary:

. Two SYSTEMS THAT CAN EXCHANGE VOULME (VIA, 8.6., A MOVABLE WALL OR PISTON] CAN INCREASE THEIR COUEC-TIVE ENTROPY BY EXPAND-ING THE HIGHER PRESSURE (P = - Du | Subsystem AND VICE VERSA.

· TWO SYSTEMS THAT CAN

EXCHANGE PARTICLES WILL DO

SO UNTIL THEIR CHEMICAL

POTENTIALS M= DU BECOME

ZRUAL.

SEE PART II FOR REST OF LECTURE.