LECTURE 2 CONTINUED

P. 2: T.D. OF INTERFACES

- · Young-Laplace LAW
 REJISITED
 - · CONSIDER A SYSTEM OF

 FIXED JOURNE IN THERMAL

 CONTACT WT A "HEAT

 RESERVOIR", I.E. A SYSTEM

 SO LARGE THAT ITS TEMP-

TRATURE REMAINS CONSTANT EUEN AFTER LARGE HEAT TRANSFERS AQ.
(TFIXED)
THEN WE HAVE: TR 0 (u-TS) = 0u-705-507 = - DUR - TROS

ENT. OF RESTRUCIR SYSTEM

LAW] = - TROSR - TROS = - TR (DSR + DS) & O (2ND)

TOTAL ENTROPY · So Any System underboint

· SO ANY SYSTEM UNDERGOINT A PROCESS Q FIXED JOURNE & TEMPERATURE WILL EVOWE TO MINIMITE THE "HELMHOLTE FREE ENERGY" F = U-TS

· CONSIDER A DROP OF LIQUID IN A FIXED Johns of GAS @ FIXED TEMPERATURE: dF6 = 2 (U= TS6) = JUG-T356 = T156-PGdV6-MGdN6-T156 = - PG dVG - MG dNG · Likewise : JF = -P JV JFs = YJA AND SURFACE / INTERFACE 91 = -916, 9N = -9Ne

Jow $dV_{L} = -dV_{G}$, $dN_{L} = -dN_{G}$ $dV_{L} = 4\pi R^{2}dR$, $dA = 8\pi RdR$ · 50: dF = d (FG+FL+Fs)=dFG+dFL+dFs = - (P1-P6) dV1 + & JA + (M1-M6) dN1 · MINIMIZING F THEN REQUIRES: · ju = ju 6 · (P1-P6)4TR23R = 18TR3R => PL-PG = 28/R · EULER'S THEOREM AND SURFACE ENERGY/ENTROPY . FOR AN EXTENSIVE FUNCTION 7 (x,...,y) of 2x7208146 JARIABLES X, ..., Y WE HATE: Z(x,...,y)=Zxx +... + Z74

WHERE 07 = 5x0x + ... + 5404

Us = TSs + VAs

or Fs = Us - TSs = YAs

or fs = Fs/A = 8

ALSO: dFs = & JAs - Ss dT

· 20109774

 $\mathcal{L} = \frac{\partial \mathcal{L}}{\partial A^{c}} \Big|_{+}, \quad \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \Big|_{A^{c}}$ · NOW, FOR ANY SMOOTH

 $\int_{0}^{\infty} \frac{2^{4}}{3} \frac{2^{4}}{3} = \int_{0}^{\infty} \frac{2^{4}}{3} \frac{2^{4}}{3} \frac{2^{4}}{3} \frac{2^{4}}{3}$

· 50 THAT : $\frac{2}{3} + \frac{3}{4} = -\frac{3}{5} = -\frac{5}{4} =$

= 8 - T 28 | A.

FROM P.I.C., SEC. 3.3

Table 3.1: Surface tension, surface entropy, surface enthalpy, and internal surface energy of some liquids at 25°C.

	$\gamma = f^{\sigma}(\text{mNm}^{-1})$	$T \cdot s^{\sigma} (\text{mNm}^{-1})$	$u^{\sigma}(\mathrm{mNm}^{-1})$
Mercury	485.48	61.1	549.6
Water	71.99	46.9	121.1
n-hexane	17.89	30.5	49.9
n-heptane	19.65	29.2	50.3
n-octane	21.14	28.3	50.9
n-nonane	22.38	27.9	51.7
n-decane	23.37	27.4	52.2
Methanol	22.07	23.0	46.3
Ethanol	21.97	24.8	48.0
1-propanol	23.32	23.1	47.6
1-butanol	24.93	26.8	53.0
1-hexanol	23.81	29.8	55.6
Toluene	27.93	35.4	65.1

- · GIBBS DIVIDING SURFACE of IF. CHEM. of SOLUTIONS
 - · WHERE IS THE INTERFACE,

 PRECISELY?
 - · GIBBS DEFINED THE INTERFACE
 TO BE A SURFACE OF
 CONSTANT SOLVENT

CONCENTRATION D7 THE

PROPERTY THAT:

N', V', + N', V' = N',

DENOTES THE SOLVENT

Species of M, M, DENOTING

RESpectively THE Number

DENOTES THE SOLVENT IN

THE BULK OF THE GAS OF

LIQUID:

MUMBER

DIVIDIO

MUMBER

DIVIDIO

PLANS

MI GIBBS

NUMBER DIVIDING

DENSITY

DISTANCE

FOR LIQUID - GAS INTERFACES

THAT ARE NOT SINGLE - COMP
ONENT, WE MUST CONSIDER

SSUZRAL CHEMICAL Species wy 707AL MOLE NUMBERS N,, N2, ..., Nm. SOLUENT SOLUTE Species Species · NOW FOR i + 1 WE HAVE IN GENERAL : いいへ。+ いいへい ≠ N! N.G NL · 7HE DIFFERENCE Ni - /Ni + Ni] = Ni NORMALIZED 70 THE SURFACE AREA A IS 72 LM &D THE "SURFACE EXC255 Ti = Ni/

· GIBBS ADDORPTION ISOTHERM

· Considering NOW A Single Solute Species

Dissolued IN A Solvent,
We now need to include

N2 AS A SURFACE STATE VARIABLE ALONG WITH

ENTROPY S, AND AREA AS

dus = Tds + 8dAs + m2dN2 (1)

But A GAIN From Extensivity:

Us = TSs + YAs + Juz N2

⇒ dus is auso:

 $= TdS_{5} + S_{5} dT + VdA_{5} + A_{5} dV$ $+ \mu_{2}^{5} dN_{2}^{5} + N_{2}^{5} d\mu_{2}^{5}$ (2)

· SUBTRACTING (1) FROM dus - dus = 0 => SsdT + Asd8 + N2dp2 = 0 · C consi Temp: dT -> 0 : 18 = - P2 dm2 · WHEN INTERFACE IS IN Equiliseiu w/ Soluzion: 12 = 12 = 12 + RTlua. ACTIVITY OF SOURTE IN Q LOW CONCENTEATIONS C,

adc

MICELLES

· THE FOLLOWING PLOT SHOWS THE MEASURED SURFACE TENSION OF DIFFERENT HYDROPHOBIC "LysopHospHolipids" 40/ FA774 ACID CHAIN HYDRO-LENGTH n C DIFFERENT CONCENTRATIONS IN AQUEOUS [LYSO PC] (µM)

Solution:

Biochemistry, Vol. 28, No. 12, 1989

5116

. SINCE THE MOLECULES HAVE A HYDROPHILIC SURFACTANT - LIKE + HYDROPHOBIC STRUCTURE, IT IS NOT SURPRISING THAT WE OBSERVE A DECREASE IN SURF. TENS. W) INC. PHOSPHO-LIPID CONCENTRATION. · SETTING ASIDE FOR THE MOMENT THE DISCONTINUITY IN THE Supe Q HIGHER CONCS, WE CAN EVIDENTLY APPLY THE GIBB'S 1507HERM TO ESTIMATE THE SURFACE EXCESS: · TAKING THE N= 14 TETRA-

DECA"] PHOSPHOLIPIA DATA:

FROM (3) = - 1 x (58-42) mN/m [(10) mm - lalo mm) $= + \frac{1 \text{ MoL}}{2.5 \times 10^{3}} \times \frac{16 \times 10^{-3} \text{ J/m}^{2}}{+0.8 \times \text{ La} \cdot 10}$ = 3.6 × 10 mor/m2 = 3.6 × 10 × 6 × 10 Molecules = 0.021 Molzcules /02 50 A Molecule . AND WHAT ABOUT THE "KINK" IN THE SLOPE @ HIGHER CONCEN-TRATIONS 7 . "MICELLE" FORMATION IN SOLUTION:

SURFACE EXCESS

AIR-WATER

INTERFACE

INCREASING

CONCENTRATION

THE SINGLE

PHOSPHOLIPIOS

MASS ACTION:

· CHEMICAL REACTION IN SOLUTION:

. VM -> M : "V Monomers clusife to Form one miceus"

- : "ONE MICELLE DISSOCIATES INTO Y MONOMERS"

MONDMERS AND MICELLES, THEN FROM LAW OF MASS

ACTION WE HAVE:

Of

Omiceus - V Gmonomer

C' = EXP (AG RT) GMICEUR - V GMONOMER

C' = K EQUILIBRIUM "STANDARD GIBBS"

CONST.

· C Sufficiently Low Monomer conc.,

we will clearly Have No Micelles:

lim c' ~ lim c' = lim c' = 0 FOR V7

· C WHAT CONC. DO WE START TO HAVE SIGNIFICANT MICELLE CONTENT?

. ASKED ANOTHER WAY:

· Suppose we ADD A SMALL AMOUNT E of Monomers to Solution.

· A FRACTION X OF THESE

(1-X) MOISCULES WILL GO TOWARDS

TORMATION OF NEW MICELLES,

Ly EX/V WHILE THE REMAINING FRACTION

MICELLES

1-X STAY AS MONOMERS

• X DEPENDS ON THE EXISTING

. E.G. WE SAID X -> 0 AS

. E.G. WE SAID X - O F C -

x = 50%? $c' = K = \left[c + \epsilon(1-x) \right]^{2}$

 $\begin{bmatrix} FOR \\ SMALL \end{bmatrix} = \frac{C'}{C'} \times \frac{1 + \frac{VE}{C}(1 - x)}{1 + \frac{Ex}{VC'}}$

$$\Rightarrow \frac{\sqrt{c}(1-x)}{\sqrt{c}} = \frac{x}{\sqrt{c}}$$

$$\Rightarrow x = \left[1 + \frac{1}{\sqrt{2}} \times \frac{c}{c}, \right]^{-1}$$
(3)

$$\Rightarrow x = \left[1 + \frac{1}{V^2} \times \frac{C}{C'}\right]$$
So IF $x = \frac{1}{2} \Rightarrow C' = \frac{C}{V^2}$

. SO WHEN # MONOMERS IN MICELLES = 1 x # MONOMERS &

.
$$C \times = \frac{1}{2}$$
 WE THUS HAVE:

$$\frac{C^{\prime}}{C/\sqrt{2}} = \exp\left(\Delta G^{\circ}\right)$$

$$\frac{C}{RT}$$

$$\Rightarrow RT \ln C = -2 \ln V RT + \frac{\Delta G}{V-1}$$

$$\Rightarrow \text{Monomer}$$

lay TERM. ("CMC") · SO C THE "CRITICAL MICELLE CONCENTRATION"

FORMATION OF SMALL GLOBULAR HYDRO-PHOBIC/

Come = EXP (DG) THE MONOMERS BECOME UNSTABLE WT CESPEUT TO THE

HYDROPHILIC INTERFACES, 1.E. MICELLES.

. C "TOTAL MONOMER CONC." C+VC' >> Come, WE EXPECT X → 100%, SO THAT ADDING MORE SURFACTANT WILL HAVE No EFFEUR ON THE MONOMER CONC. C IN SOLUTION. · THIS EXPLAINS THE FLATTENING" OF THE & US. CONCENTRATION CLIRUSES SHOWN ABOUTE:

PIS SENSITIVE TO MONOMER CONC.

C, NOT TOTAL CONC. C+VC'.

THERE IS STILL THE LINGERIVE QUESTION

OF WHY THE MONOMER -- MICEUR

TRANSITION Q C & C CMC 15 APPARENTLY

· LET'S LOOK @ HOW X CHANGES FOR A

SMALL FRACTIONAL CHANGE IN CONC NEAR

DISCONTINUOUS.

.
$$C \rightarrow (1+k) C_{cmc}$$
, $k \ll 1$

$$\Rightarrow c' \rightarrow C_{cmc} + d C_{cmc} = C_{cmc} [1+Vd]$$

$$\Rightarrow c \rightarrow V^{2} \qquad V^{2} \qquad V^{2}$$

$$\Rightarrow c' = C = C_{cmc}$$

$$\Rightarrow c' = C_{cmc}$$

THE FASTER THE TRANSITION X = 0% - 100%!

MORE COMPLETE NUMERICAL Solution Gives :

Typical Micrus Sizzs ARE ~ 50 - 150 :

doi:10.1371/journal.pone.0062488

"MONOMER NUMBER" HYDROPHOBIC TAIL SEE CITED ARTICLE FOR DETAILS.