CH-242(b) - Part 1
Lecture 2 - Surface Thermodynamics

Resources:

e from Butt et al., Physics and Chemistry of Interfaces, third (2013) edition:

Chapter 3 — “Thermodynamics of Interfaces”

Section 11.2 — “Spherical Micelles, Cylinders, and Bilayers” (for mi-
celle content)

e for an excellent text on the fundamentals of thermodynamics:

Callen, Herbert B. Thermodynamics and an Introduction to Thermo-
statistics. Second ed. New York, Wiley, 1985.

Summary

e Thermodynamics review

The state of a macroscopic system in equilibrium is characterized by
a small number of state variables.

First law: The system energy U is a function of the state variables,
and the change AU = AW + AQ in the system energy as a result
of some process is determined by the work AW done on the system
and the heat AQ absorbed by the system.

Second law: The system entropy S is a state variable, and for any
adiabatic process (AQ = 0) we have AS > 0. For a general process
we have TAS > AQ.

A quasi-static process is defined to be one where TAS = AQ.
The system temperature T is equal to dgU.

The unconstrained state variables of an adiabatically closed system
will spontaneously evolve to maximize the system entropy S. The
unconstrained state variables of a system in thermal contact with
a heat reservoir will spontaneously evolve to minimize the system’s
Helmholtz free energy F = U — T'S.



e Thermodynamics of surfaces

— The surface tension 7y of an interface is equal to 94U, where U is the
interfacial energy and A is the interfacial area.

— Single component interfaces:

* The interfacial Helmoltz free energy density f = F/A is equal to
the surface tension ~.

* The interfacial entropy density s = S/A is equal to —d77.

* The interfacial energy density u = U/A is equal to v — dr7.

— In the Gibbs convention, the interface is defined to be an infinitely
thin (i.e. two-dimensional) surface of constant solvent density posi-
tioned so that the surface excess I'; of solvent molecules is zero.

— The interfacial surface excess I's = I' of a solute dissolved in so-
lute can be estimated using the Gibbs adsorption isotherm I' =
—ﬁ@ln &Y, where ¢ is the concentration of solute in solution.

o Micelles

— Beyond a certain surfactant concentration ¢c e known as the criti-
cal micelle concentration (or CMC), monomeric surfactant molecules
in solution will begin to coalesce, forming large spherical structures
known as micelles.

— The CMC can be estimated by identifying a discontinuity in the
slope of a graph plotting surface tension 7 vs. the logarithm In ¢ of
the surfactant concentration.

— The Gibbs energy AG® of micellization can be estimated from the
CMC.

1 Fundamentals of thermodynamics — crash course

1.1 State variables

The observable properties of a macroscopic system in equilibrium are determined
by a set of variables called state variables that are remarkably small in number in
light of the enormous (=~ N, ~ 10?3) number of coordinates required to specify
the state of all of the system’s microscopic degrees of freedom. Included among
the state variables for simple systems consisting of a pure substance (e.g. a gas
of carbon dioxide, liquid water, solid diamond, etc.) are the familiar system
volume V and the particle number N. For a magnetic system for example
we would add to the list of state variables its magnetic moment, and for an
interface we include as a state variable the interfacial area A. State variables
should also have the property of being extensive in that doubling the system
requires doubling the values of all its state variables.

A question poses itself: given a system, how does one identify its state vari-
ables? This question turns out to be a subtle one, and we will satisfy ourselves



with the following loose definition which will be adequate for our purposes: the
state variables are, with a single notable exception, all the independent exten-
sive properties of a system that can be directly measured and/or controlled.
Clearly properties like volume and particle number meet the criteria of measur-
ability /controllability. The single exception mentioned above which completes
the list of state variables is, you may have guessed, a variable called the system
entropy, denoted S. Our task in the remainder of this crash course is to enun-
ciate the defining properties of the system entropy and its relation to the other
central notion of thermodynamics: the system energy.

1.2 Energy and the first law of thermodynamics

Abstractly, the system energy, which we denote with the symbol U, is a function
of the state variables (X1 =S, Xo,...,Xn), i.e. U(X1,...,Xx). This function
is also extensive in the sense for any number A > 0 we have

UAX1,AXa, ..., AXN) = AU(X1, X, ..., Xn) (1)

i.e. a doubling of all the state variables results in a doubling of the energy.

Suppose we subject our system to some transformation. This transformation
could be an increase of its volume, a reduction of its particle number, or an
increase in its temperature (though we haven’t yet defined what we mean by
temperature). No matter what transformation we consider, the resulting change
AU in the system energy U can be decomposed into two contributions:

e the work AW done on the system by its surroundings, and
e the heat AQ absorbed by the system from its surroundings.

Mathematically this fact, termed the first law of thermodynamics, is written as

AU = AW + AQ (2)

1.2.1 Work

Of course this equation as it stands it not very useful since we have not defined
what we mean by the work AW or the heat AQ incurred in some transformation.
We attack first the work AW and begin by noting that in practice it is possible,
by enclosing the system with thermally insulating walls, to prevent heat transfer
between the system and its surroundings, i.e. to arrange it so that AQ = 0. A
transformation of a system under such conditions is called an adiabatic process.

It is an empirical fact of nature that, given any two system states A =
(Xf‘,X{‘, . ,Xj:‘,) and B = (XlB, XB ... ,Xﬁ), at least one of the two follow-
ing statements is true:

e There is an adiabatic process which brings a system beginning in state A
to the state B.



e There is an adiabatic process which brings a system beginning in state B
to the state A.

Now the work AW required to achieve such a transformation is presumed to be
measurable. This fact, combined with the earlier-mentioned general existence
of adiabatic (i.e. thermally insulating) walls, implies that the energy difference
AU between any two system states A and B can be measured by noting the
quantity of work AW done by the surroundings in the adiabatic process taking
the system from A — B or B — A (whichever one is possible).

The preceding discussion is rendered more clear by looking at a couple simple
examples. Consider first a volume of gas enclosed in a cylinder with a movable
wall (i.e. piston) on one end:
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If we displace the piston inwards by a distance Az while applying a pressure
P on the face piston of area A, then evidentally we perform a work AW =
FAx = PAAz on the system. Note that this work is positive (AW > 0)
since the displacement of the piston is in the same direction as the applied
force. It is of course entirely possible, depending on the thermodynamic state
of the enclosed gas, that the pressure P’ exerted by the gas on the cylinder
might exceed the pressure P that we (i.e. the “surroundings”) exert on the
piston. In this case the piston will be pushed outwards against our opposing
force PA < P'A. The displacement Az would then be negative if we take the
force F' = PA we exert on the piston to be positive. The work AW = FAx
done by the surroundings would then be negative, in which case would we say
that the system does work on its surroundings.

No matter the direction of the displacement Az, if the walls of the cylinder
— piston included — are adiabatic, then the change in the system energy AU
created by the displacement will be AU = AW + AQ = AW = PAAz =
—PAV, where AV = —AAx is the change in the system volume.

We now consider two transformations/processes that differ fundamentally
in character from the one just presented. For convenience we illustrate both
processes in the same diagram, shown below:
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Shown above is a fluid comprised of a single inert pure substance. Integrated
into the fluid is a stirring rod and a resistor of resistance R connected to an
external battery of voltage V. If we begin spinning the stirring rod, then we
will encounter a drag force due to the fluid’s viscosity so that if we want to rotate
the rod at an angular w we will need to apply a torque 7 = bw to overcome the
drag force exerted by the fluid, where b is some constant. If we apply this torque
for a time At then we rotate the rod by an angle A¢ = wAt and therefore do a
quantity of work AW = 7A¢ = bw?At. Similarly, to supply a current I = V/R
the battery must deliver a power P = VI = V2/R to the resistor, so that in a
time At there is a work done equal to AW = ‘%At.

These processes differ in character from that performed on the piston in the
sense that they involve no change in the non-entropic state variables. Indeed
for a pure fluid the states variables are simply V', N, and S, so it is only the
system entropy S which will have changed as a result of the stirring of the rod
or the driving of electrical current through the resistor. Qualitatively we also
have some intuition that both of these activities will lead to some “heating up”
of the fluid. The increase in system entropy we therefore expect to be reflected
in a change in the system temperature (which we still have yet to define). This
is all true even if the fluid is enclosed by adiabatic walls, so that AQ = 0 during
the processes. From these examples we arrive therefore at two conclusions which
might appear to you as rather suprising or unintuitive:

e The entropy of a system S can change during an adiabatic process.

e A system can heat up even during a process where the heat transfer AQ
between the system and its surroundings is zero.

1.2.2 Heat

We are now prepared to quanitify the heat AQ absorbed by a system in some
non-adiabatic (or “diabatic”) process. In a diabatic process taking a system
from a state A to a state B, the heat absorbed AQ is given by

AQ = AI/Vadiabatic - AW (3)



where AW is the work done in the diabatic process and AWggiabatic 1S the
work done in an adiabatic process taking the system from A to B. If no such
adiabatic process exists, then an adiabatic process B — A must exist, in which
case AWodiabatic 18 simply the negative of the work required for the adiabatic
process. Convince yourself that equation (3) follows straightforwardly from the
first law of thermodynamics.

Suppose for example we begin with a fluid in a state A = (V4, N4, S4) and in
this state a reading of the fluid’s temperature (via e.g. a mercury thermometer)
gives a temperature T4. We then enclose the fluid in an adiabatic container and
stir it for a time At, doing on the fluid a work AW = bw?At > 0 and thereby
raising its temperature to Tp > T4. The system is now in some different
state B = (Vg = Va,Np = Nyu,Sp # S4). We then place the fluid in a
diabatic container and put it in thermal contact with a cold body, returning
its temperature back to T4. The fluid volume and particle number are still the
same, so the cooling process has the effect of returning the system back to state
A. The work AW done in the (diabatic) cooling process is zero, there being
no identifiable sources of work employed during the cooling. Applying equation
(3), the heat AQ “absorbed” by the system during the diabatic cooling process
B— Ais

AQ = AWadiabatic — AW
= AWadiabatic — 0
= AW.diabatic (4)
— _AW
= —bw?At <0 ,

so that we might more intuitively say that the system “gives off” a positive
quantity of heat AW to its surroundings.

1.3 Mathematical detour - differentials

Before developing further it is helpful at this juncture to pause briefly to address
the concept of differentials as they are employed in the study of thermodynam-
ics. Perhaps in previous expositions of thermodynamics you have encoutered
equations like

dU =TdS — PdV (5)

which apply to simple closed (AN = 0) single-component systems. Perhaps you
are like me and have always been puzzled by these types of equations. How big
is dS? How big is dV? Is dV related to dS?7 The aim in this subsection is to
make clear what is trying to be expressed by these types of equations.

Take an arbitrary function z(x,y) of two variables x and y. Take a “point”,
i.e. pair of values (x1,y1), and a nearby point (x2,y2) = (z1 + Az, y1 + Ay):
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We now pose the question: what is the difference Az = z(z2, y2) — 2(21,y1)
in the value of the function z between these two points? If the function z is
sufficiently smooth and the separation (Axz, Ay) between the points sufficiently
small, then we might estimate the value of z at (z2,y2) via a first-order taylor
expansion about the point (z1,y1):

2(w2,y2) = 2(21,Y1) + Op2z(w1, Y1) AT + Oyz(x1,y1) Ay (6)

where 0,2(2,,Y,) means “the partial derivative of z with respect to x (i.e. its
first argument), evaluated at the point (z,,%,)”, and likewise for dyz(2o,yo)-
Evidently we have then

Az = OpzAx + Oyz(x1,11)AyY (7)

This approximation of course becomes better and better as Az, Ay — 0, so that
when we write

dz = zzdz + z,dy (8)
you should translate it in your head into the following phrase:

The difference dz in the value of a function z(z,y) between two
points (z,,y,) and (2, y’) = (z,+dz, y, +dy) is approzimately equal
to zgdx + zydy, where z, = 0,2(%0,Y,) and zy, = 9yz(x0,y,), and
the accuracy of this approximation improves as dr and dy become
smaller and smaller.

Note that as dz, dy — 0 we also have 9, 2(2',y') = 0x2(20,Yo) and dyz(2’,y') —
0y2(0,Yo), so that so long as dr and dy are sufficiently small it is not important
at which point ((z,,¥,) or (z/,3’)) we evaluate the partial derivatives.

Now take our function U representing the system energy, and suppose it is
a simple one-component system so that its state is characterized by the usual
volume V', particle number N, and entropy S. To estimate the difference dU
in system energy at two states (S,, V5, N,) and (S, + dS,V, + dV, N, + dN) we
therefore must compute

dU = TdS — PdV + udN (9)

where, evidently:



e T = 9gU and is, we will see, equal to the (absoslute) temperature of the
system,

e P = —0yU and is equal to the mechanical pressure exerted by the system
on the walls of its container, and

e 1 = OnU is the “chemical potential” quantifying the energy penalty /incentive

involved in particle transfer to/from the system and its surroundings.

One finds thus that various physically-relevant system properties are encoded
as first derivatives of the energy function U. The energy function U in fact
completely characterizes a thermodynamic system!, so that any property of
interest is encoded by U. A system’s heat capacity and compressibility are for
example encoded in the second derivatives of U.

1.4 Entropy and the second law of thermodynamics

The second law of thermodynamics relates the heat, energy, and entropy. It
states that for any process, the change in entropy AS and the heat absorbed
AQ are related by the following inequality

TAS > AQ (10)

The law written in this form implicitly assumes that the temperature T' = dgU
is constant throughout the process and so applies only to processes which result
in only a very small change in the system state, e.g. processes for which equation
(9) holds. Processes resulting in large changes in the system state can always
be decomposed into a series of small processes so the law as stated is perfectly
general.

Asserting that temperature is always a positive quantity, then applying the
second law to adiabatic processes we have that

AS>0, (11)

which is perhaps the form of the second law of thermodynamics more familiar
to you. This form is in fact as general as the previous version, since any non-
adiabatic process can be considered as adiabatic if one enlarges the system under
consideration to include the surroundings with which any heat transfer is taking
place.

When we have equality, i.e. when TAS = AQ we talk about a “quasi-static”
process. For our simple (S, V, N) systems we have for quasi-static processes:

AW = AU — AQ
=AU —TAS
= (I'AS — PAV 4+ uAN) —TAS
= —PAV 4+ AN

(12)

LFor this reason U is known as the “fundamental relation”



If the system is “closed” then AN = 0 and we recover the standard formula
relating work, volume, and pressure:

AW = —PAV (13)

1.5 Quasi-static processes

The equation (13) however only applies for quasi-static processes. In physical
terms a quasi-static process is one which occurs slowly enough that the system
remains arbitrarily close to equilibrium at all times during the process. We
return to our previous examples to clarify this distinction between quasi-static
and non-quasi-static processes.

Let’s look again the adiabatic compression of a volume of gas:

P+avr PR

We consider two cases:

e AP — 0. We are then applying barely enough force to overcome the
pressure P applied by the gas on the container. In this case the cylinder
will move very slowly, slowly enough that the density of the gas remains
uniform at all times throughout the collision. This process we therefore
expect to be effectively quasi-static, and indeed when we compute the
work AW done we obtain

AW = (P + AP)AAx ——— PAAx = —PAV
lim AP—0
thus recovering equation 13 for quasi-static work. The negative sign on the
right-hand-side comes from the fact that the work done in compression is
positive (so that Az > 0) while the change in volume AV in compression

is negative. Since the compression is also adiabatic we have from equation
(11) AS =0

e AP > 0. In this case we have a large excess force AP A acting to rapidly
accelerate the piston. If the speed of the piston is on the order of the speed
of sound of the gas, then the gas particles can not move quickly enough to
redistribute themselves uniformly throughout the gas, setting up a large
pressure gradient:
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In this case there is an “extra” energy from the extra work AP|AV|
that is put into the system in this form of acoustic waves created by
the afore-mentioned pressure gradient. These waves eventually dissipate
and when the system reaches equilibrium there will be an increase AS =
AP|AV|/T > AQ = 0 in the system entropy that we did not have in
the quasi-static case. This increased entropy will be reflected in a higher
gas temperature than that observed for quasi-static (AP — 0) adiabatic
compression for the same volume change AV.

The adiabatic stirring (bw?) and joule-heating (V2/R) of the fluid are on
the other hand necessarily non-quasi-static. There are two ways of seeing this,
one rigorous and the other hand-waving. For the rigorous explanation we note
simply that for an adiabatic process we necessarily have AU = AW and for the
stirring and joule-heating processes considered we have AW > 0. We also have
for these processes AV = AN = 0. Therefore from equation (9) AU = TAS.
Putting this all together we get TAS = AU = AW > 0 or TAS > 0= AQ, so
that the process is non-quasi-static.

From the hand-waving persective, we think of quasi-static processes as those
propelled by a very small impetus. In the case of adiabatic compression this
impetus was a very small pressure difference AP producing a force AF = AAP
which drives the compression. For the stirring process our impetus would be
the torque 7 applied to the stirring rod. However, since AW o w? and T  w,
there is no first-order change in the system as 7 — 0. It is only at finite torque
that we can effectively change the system, so that the impetus driving any
finite change in the system is necessarily not “very small”. The same argument
applies to joule-heating, where the impetus is the potential V' which does a work
AW V2 that is quadratic in the impetus V.

1.6 Surface tension revisited

For a single-component gas-liquid interface the state variables are simply the
entropy S and the surface area A.> The analog of equation (9) for this system
is then

dU =TdS + odA (14)

2You may wonder why the particle number N does not appear among the state variables
for a single-component gas-liquid interface. The reason, addressed in more detail later, is
one of convention (the “Gibbs convention”). It is possible to consistently partition a single-
component two-phase system consisting of a gas phase, liquid phase, and their interface in
such a way that the number of molecules precisely “at” the interface is exactly zero.
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where
o = 8AU (15)

For some process producing a change AA in the area of the interface we then
have from equation (14) and the first law of thermodynamics

AW = AU — AQ =TAS + cAA - AQ (16)
from which via the second law of thermodynamics (equation (10)) we obtain
AW > oAA (17)

so that o is the coefficient relating the minimum work required to achieve a
change AA in interfacial area. This is however precisely the same (energy-
based) definition that we gave to the interfacial surface tension v, i.e. ¢ =~. In
other words, we can alternatively (or rather more precisely) define the surface

tension vy via
_(w
T=\04) |,

where the subscript S indicates that the entropy be held fixed. In other words,
the surface tension is equal to the rate of change of the interfacial energy U
with respect changes in interfacial area AA for processes occurring at constant
interfacial entropy S.

(18)

1.7 Temperature

In this subsection we justify our identification of the system’s temperature T’
with the partial derivative dsU. We do this by demonstrating that when two
systems are put into thermal contact, heat will spotaneously transfer from the
system with the larger dsU to the system with the smaller dsU, i.e. heat
spotaneously flows from hot to cold.

Take two closed rigid systems A and B that were previously seperated and
bring them into thermal contact. We assume the pair of systems to be isolated
from the surrounding environment, and that no external work is done on either
system. We can say then that for the total energy U = U4 +Up of the combined
system we have

AU=AW+AQ=0+0=0 (19)

We do not however rule out the possibility of energy transfer between the two
systems, so that AU4 and AUpg are not necessarily zero. In light of the previous
equation however we do require

AUp = —AU, (20)

so that overall AU = 0. We now assume only small changes in system state, so
that equation (9) applies separately to both systems. Since both systems are
closed and rigid we have

AVyi=AVg =0 (21)
AN4s = ANg =0 (22)
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so that

AUs = T4AS (23)
AUp = TASp (24)

where we remind the reader that T4 and 15 represent respectively ds,U4 and
0s,Up. Given equation (20), the above relations imply

T
ASp = —=2AS, (25)
Ty

now from the second law of thermodynamics applied to adiabatic process (equa-
tion (11)) we have
AS=AS,+ASg >0 (26)

which, combining with equation (25), yields
0 <AS4+ASp

Ta
=AS4 — —AS
A= g A5

11 (27)
=T41A _——
‘A SA<TA TB)
1 1
:A _— —
UA<TA TB)
o Ty-—Ty
AUy TuTs

so that the energy or “heat” transfer AUy = —AUpg to system A from system
B is positive if 0g,Up = Tp > T4 = 0s,U4. Therefore our identification of a
system’s temperature with the partial derivative dgU is shown to reproduce the
well-known fact that heat flows spontaneously from higher temperature bodies
to lower temperature bodies.

1.8 The second law and spontaneous evolution

We close our crash course on thermodynamics with a short elaboration on the
content of the second law of thermodynamics. Take the adiabatic version of the
second law (equation (11), which states that any physically realizable process
for an isolated system is subject to the constraint AS > 0. We would like in
fact to strengthen this statement by adding to it the principle “anything that
can happen will happen”. The second law becomes

Any adiabatically isolated system will spontaneously evolve over its
unconstrained state variables in order to maximize its entropy. When (28)
the entropy is maximized we say the system has reached equilibrium.

12



The unconstrained state variables for the example of two systems A and
B in thermal contact discussed in subsection 1.7 are the subsystem energies
U4 and Upg, or more precisely just their difference U4 — Up, since their sum
Ua + Up = U being fixed by the first law of thermodynamics. We argued
that in this example a transfer of energy from the hotter system to the colder
system would result in an increase in the total system entropy. Our augmented
second law (equation 28) asserts such a transfer must occur, and will continue
to occur so long as it produces an increase in entropy. In other words the energy
difference Uy — Up will spontaneously evolve until the change in entropy AS
accompanying an energy transfer AU between the two subsystems is zero, which
in light of equation (25) occurs when Ty = Tz, in line with our intuition.

How long this “equilibration” will take is incidentally a question outside
of the scope of thermodynamics. Evidently this will be determined by many
factors, including the thermal conductivity of the material composing the two
systems as well as the conductivity of the diabatic walls putting them in thermal
contact.

Similarly, we can imagine two systems placed in thermal contact via a mov-
able diabatic wall:

—>

Vall Ve

In this case the unconstrained variables are expanded to include the volume
difference V4 — Vp between the two subsystems. A similar analysis to that
carried out in subsection 1.7 reveals that the combined system can increase its
entropy by an “transfer” of volume from the system with the lower “pressure”
P = —0yU to the higher pressure system, with equilibrium (i.e. AS = 0)
reached once both the temperatures and pressures of the systems equalize. This
justifies our identification of the partial derivative —dy U with the mechanical
pressure P of the system.

Analogously, if exchange of particles between two subsystems is permitted,
then the particle number difference N4 — Np is unconstrained. Particle transfer
then spontaneously occurs from the system of higher chemical potential u =
ONU to lower chemical potential until the chemical potentials equalize. The
chemical potential plays a central role in several of the interfacial chemistry
topics covered this semester, including micelle formation (discussed later in this
lecture) as well as electrocapillarity and electric double-layer formation (lecture
3).

Concept quiz:
In section 1 we covered the process of adiabatic compression of a gas where
from some initial state A the system is brought to a state B doing some work
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AW  resulting in a reduction in the system volume by some amount AV and
an increase in the system temperature by some amount AT. Now consider
a process where the system beginning again in some state A is brought to a
different state B’ by diabatic compression where some heat 6Q > 0 is given off
by the system in the process. We might imagine for example that cylinder walls
are replaced with a material that is more thermally conducting. The process
requires a work AW’ = AW equal to that of the adiabatic process A — B
and results in the same compression AV’ = AV but a lower final temperature
AT' < AT. What experiment/measurement could you subsequently perform
to determine the heat dQ) given off during the diabatic compression?

Answer:

By the first law of thermodynamics, the energy difference Ug: — U4 between
states A and B is AW’ + AQ’, where AQ’ is the heat absorbed by the sys-
tem during the diabatic compression. Similarly the energy difference Ug — Ug
between states A and B is AW. If we knew the energy difference Ug — Up/
between states B and B’ then we could determine the heat 6Q = —AQ’ given
off by the gas during the diabatic compression by

0Q = -AQ’
— AW — (Ups — Uy)
=AW'— (U —Ux)+ (Ug — Up) (29)
— AW — AW + (Up — Ug/)
=Ug —Up

since by assumption AW = AW’. Now in subsection 1.2.1 it was asserted that
between any two states C' and C’ there is an adiabatic process bringing either
state C' to C’ or an adiabatic process bringing state C’ to C. Between states B’
and B it is state B’ that has the lower temperature, so it should therefore be
possible to adiabatically transform the system from B’ to B by, for example, the
mechanical stirring or electrical joule-heating processes described in the same
section.

Practically this would require fixing the piston so it was not allowed to move,
thereby fixing the volume, and insulating the gas (i.e. reducing the thermal con-
ductivity of the cylinder walls) to prevent heat exchange with its surroundings.
One monitors the gas temperature during the process and stops the heating once
the temperature reaches that attained during the adiabatic process A — B. The
system — characterized by state variables S, V, and N — is now in a state B”
where its volume V', particle number N, and temperature T of the system are
equal to that of the gas in the state B. The system entropy S must therefore
also be equal to that of state B (otherwise their temperatures would necessarily
differ), and we conclude that B” = B. By the first law of thermodynamics,
the work AW” required to achieve this temperature rise is equal to Ug — Up/
and thus by equation (29) equal to the heat §Q transferred from the gas to its
surroundings during the diabatic compression A — B’.

14



2 Thermodynamics of Interfaces

2.1 Helmholtz free energy and the Young-Laplace law re-

Consider a thermodynamic system of fixed volume in thermal contact with

a “heat reservoir”, i.e.

a system so large that its temperature Tz remains

effectively constant even after finite (and possibly large) heat transfers AQ
to the system. We presume as well that the thermal contact is sufficiently
strong that the system temperature is constrained to be at all times equal to
the temperature Tk of the reservoir. Let’s inspect the change in the system
quantity U — T'S during some small process:

A(U —TS) = AU — A(TS)

=AU - ATS - TAS

= —TrASRr — TRAS
= —Tr (ASk + AS)
(5) = —T'AS’

(6) <0 .

We give below an explanation for the various steps:

e (1) Product rule for derivatives

(30)

(2) The system temperature T is at all times equal to the reservoir tem-
perature T and so the change AT during any process is constrained to

(3) We assume the system and reservoir are collectively isolated from their
surroundings so the total change AU’ = AU +AUr = AW/ +AQ' = 0+0
in their collective energy is zero.

(4) We assume the non-entropic (volume, particle number, etc.) state
variables of the reservoir are fixed so that AUr = TrASR.

(5) The system and reservoir can be considered collectively as a larger
thermodynamic system with entropy S’ = S + S and temperature T’ =

(6) Application of the second law of thermodynamics to the combined

What does equation (30) tell us? It asserts that, for any process undergone by
a system in contact with a heat reservoir, the change in the function U — T'S
is necessarily negative. Contrast this with an isolated system, for which any
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process will necessarily ocassion an increase in system entropy S. By analogy
we can say that:

The unconstrained state variables of any system in contact with a heat
reservoir will spontaneously evolve in order to minimize the system’s (31)
“Helmholtz free energy” F =U —TS.

We now apply this principle to derive from thermodynamic principles the Young-
Laplace equation (discussed at length in the previous lecture) relating the radius
of curvature R of a gas-liquid interface to the pressure difference AP across the
interface. Suppose for simplicity that we have a single-component two-phase
gas-liquid system, e.g. liquid water in contact with its own vapor:

Yo

As a thermodynamic system it can be considered a composite of three sub-
systems — the gaseous vapor, the liquid phase, and their interface. We suppose
that the composite system is closed and has a fixed total volume and that it is
in contact with a heat reservoir of temperature 7. We consider first the change
in the Helmholtz potential Fiz of the gaseous phase for some small process:

dFg = d(Us — TSg)
= dUc — TdSe

32
= (TdSg — PgdVg + pedNg) — TdSq (32)
= —PgdVg + pgdNg .
Likewise for the liquid phase we have
dFy = —PrdVyp + prdNyg, (33)
while for the interface we have, from equation (14):
dFs = ~vdA (34)
where A is again the interfacial surface area and  the interfacial surface tension.
Now since the total volume of the system is fixed we have dV;, = —dVg = dV/,
and since the system is closed we have dN;, = —dNg = dN. If we assume a
spherical shape of radius R for the interface then we have
4
dv =d (Bwa‘) = 47R%*dR (35)
dA = d (47R*) = 87 RdR (36)
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the minimization principle for the Helmholtz free energy (equation (31)) asserts
that equilibrium is achieved when

dF =d(Fg+Fp +Fs)=0 (37)
Plugging in equations (32)—(34) we obtain:
dF = — (P, — Pg)dV +~vdA + (pr — pg) AN (38)
which after plugging in equations (35) and (36) becomes:
dF = (v87R — (P — Pg) 4wR?) dR + (ur — pc) dN (39)

Since the interfacial radius R is an unconstrained variable, the system we be
out of equilibrium unless

v87R — (P, — Pg)4mR* =0 (40)
or ~

where AP = P;, — Pg, thereby recovering the Young-Laplace equation.

Incidentally, while the Young-Laplace equation places an equilibrium con-
straint on the pressure difference AP between the gaseous and liquid phases,
it imposes no constraint on the vapor pressure Pg of the gas phase. However,
returning back to equation (39) we find that the lack of constraints on particle
transfer between the liquid and gaseous phases imposes the additional equilib-
rium condition:

pL = PG - (42)

This condition, in combination with the Laplace equation, turns out to be equiv-
alent to the Kelvin equation (also discussed at length in the previous lecture)
relating vapor pressure above an interface to interface curvature.

2.2 Surface energy and surface entropy

In this subsection we derive formulas relating the central thermodynamical inter-
facial properties of surface energy and surface entropy to measurable quantities.
We start by stating without proof a mathematical theorem called “Euler’s the-
orem” that asserts that any extensive function f (z,y,...,z2), i.e. any function
for which for any number A it holds that f (Az, A\y,...,Az) = Af (z,vy,...,2),
can be written in the following form

f=x0f+yoyf+...4+20,f (43)
applying Euler’s theorem to the surface energy U we obtain via equation (14)

U=TS+~A (44)
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The surface Helmholtz free energy F' can then be written
F=U-TS=(TS+~A)-TS=~A (45)
so that for the surface Helmholtz free energy density f = F/A we have simply
f=n (46)
In addition, we have
dF =d(U -T58)
=dU — d(TS)
=dU —TdS — SdT (47)
= (TdS + vdA) —TdS — SdT
= —8dT + vdA
so that
S=-0rF (48)
v =04F (49)
This implies the following relation for the surface entropy density s = S/A:
S

§=—

A
orF
vy )
o =-or (%) o
.
= —0rvy

We therefore find that surface entropy can be determined experimentally by
measuring the temperature dependence of the surface tension .

The surface energy density u = U/A also permits a convenient formulation
in terms of the surface tension and temperature:

F S (51)

=~ —Tory

3In the step marked (!) we were able to bring the A inside the partial derivative be-
cause there is an implicit understanding that the temperature derivative in equation (48) is
performed at constant interfacial area A.
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Below we find a table of surface tension, and surface entropy and energy
densities of various pure substances measured at room temperature?:

Table 3.1: Surface tension, surface entropy, surface enthalpy, and internal surface energy of
some liquids at 25°C.

y=f(mNm™") T -s°(mNm™') u°(mNm™)

Mercury 485.48 61.1 549.6
Water 71.99 46.9 121.1
n-hexane 17.89 30.5 49.9
n-heptane 19.65 29:2 50.3
n-octane 21.14 28.3 50.9
n-nonane 22.38 217.9 51.7
n-decane 23.37 274 922
Methanol 22.07 23.0 46.3
Ethanol 21.97 24.8 48.0
1-propanol 23.32 23.1 47.6
1-butanol 24.93 26.8 53.0
1-hexanol 23.81 29.8 55.6
Toluene 27.93 354 65.1

2.2.1 Gibbs dividing surface and surface excesses

In this section we address the question: where precisely is the interface between
two phases? This is of course a matter of definition, and we adhere in this course
to the definition proposed by American scientist J.W. Gibbs (1839-1903). Gibbs
defined the interface as an infinitesimally thin surface S (not to be confused with
entropy) dividing the two phases A and B in such a way that the solvent density
is constant everywhere on S and

NA+NE =N, (52)
where:
e Nj is total quantity of solvent shared among the two phases, and
e N{* =n{'V4 is the mole number of solvent in phase A, where:

— V4 is the volume of the region on the phase A side of the dividing
surface S, and

— nf' is the molar density of solvent measured at a point inside of the
bulk of phase A far from the interface.

4From chapter 3 of Physics and Chemistry of Interfaces (2013 edition).
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The quantities N, VP and nf are defined similarly. The following diagram
showing a very zoomed-in view of a gas-liquid (i.e. A ~ G, B ~ L) interface
may be helpful:

v
A+ N\, , GBeS
' DN -
PLANT

N B TR
DEeNS\TY

DisST1aNCe

The Gibbs dividing plane S is positioned so that equation (52) holds. Moving
away from the dividing plane, the molar density of the solvent in the liquid phase
asymptotically approaches its bulk value n¥ and, moving in the other direction,
the molar density of the solvent in the gaseous phase asymptotically approaches
its bulk value n{ < nf. If the Gibbs plane is moved to the right or left then
we will have (in light of the definitions of N and N¥) N& + NI > N; or
NIG + NlL < Nj, respectively.

Now if our system contains m — 1 other molecular species of total mole

numbers No, N3, ..., N,, in addition to the solvent species (of mole number
Ny), then for these species i = 2,...,m we will have in general
N+ NP # N, (53)

i.e. for the non-solvent species equation (52) will in general not hold. The
difference N7 = N;— (N/* + NP), normalized to the interfacial area A is termed
the “surface excess” I';, i.e.

I =N7/A (54)
The surface excess gives, in the context of the Gibbs convention, a measure of

the concentration of the molecules at the interface.

2.3 Gibbs adsorption isotherm

In this section we derive an important formula relating interfacial surface tension
~v and the surface excess I's = I' of a single solute species dissolved in solvent.
For such a system we must add to the list of the surface state variables S and
A the interfacial mole number N§ = N°. The analog of equation (14) becomes

dU = TdS + vdA + pSdN*® (55)
where we now have u° = dysU. Applying Euler’s theorem we have

U=TS+vA+ pSN* (56)
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Subtracting the former equation from the differential of the latter we obtain
SdT + Ady + N%du® =0 , (57)
and restricting attention to isothermal (dT = 0) processes we get
Ady = —N5du® (58)
which after rearrangement becomes:
dy = —Tdp® (59)

The above relation demonstrates that the surface excess of the solute can be
estimated by determining the dependence of the surface tension on the surface
chemical potential 1 of the solute species. To do this we exploit the fact that
there is no constraint to the transfer of solute molecules between the interface
and the liquid solution. In equilibrium therefore the chemical potentials are
equal: p° = pP. The chemical potential of the solute in solution at fixed

temperature T obeys the relation

a
pt =pl + RTIn — (60)

o
where a is the activity of the solute. At low solute concentrations the a becomes
approximately equal to the solute concentration ¢, so that in this limit we have:

c
p* = ph + RTIn — (61)
(o]
where pl is the chemical potential of the solute at an arbitrary reference con-
centration c,, often taken to be 1 molar. So the chemical potential ° can be
varied by varying u” via the solute concentration c.
Taking the differential of the above equation yields
RT
dut = —de (62)
c
Since p® = p” of course implies du® = du”, then, plugging the above equation
back into equation (59), we obtain finally the “Gibbs adsorption isotherm”:

Cc

r=-——
RT

1
8(;7 = _ﬁaln Y (63)

3 Micelles

3.1 Gibbs equation and lysophospholipid surface excess

As an application of the Gibbs isotherm, we take a look at the following plot
showing the measured interfacial surface tension versus concentration ¢ different
lysophospholipids® in aqueous solution:

5Lysophospholipids are a product of the enzyme-catalysed decomposition of phospholipids.

21



HyoRopHOBIC

l‘ / o \( ? [ 3 S > - ‘6 ‘
N B i AN
\ /\/\O \ ‘ \ﬂ/mww t
l \ | [ — e — — — _.-—‘
e - = - T T / ol T T
HyDRo - § B% ]
- )
Pewmie 7| || -
; I n 1
g | I ]
S sof [ |2\ lo 1
2 7 M \ \ i
-
W |60 | J
<
g | [ 7
2 | = - - ]
0k :4— AQ,\ “‘—'AQNL
1;;- 1 1| 0 10 102 103 104 10°

[LYSO PC] (M)

Biochemistry, Vol. 28, No. 12, 1989 5116

Figure 1: Experimental measurements of interfacial surface tension as a func-
tion of lysophospholipid concentration in aqueous solution. The structure of a
lysophospholipid molecules with alkyl chain length n = 16 is shown for refer-

ence.
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The different markers indicate the number of carbon atoms composing the
lysophospholipid alkyl tail. From the diagram one can see that lysophospho-
lipids have a surfactant-like hydrophilic-hydrophobic head-tail structure, so it
is not surprising that the surface tension should exhibit a strong decrease with
increasing lysophospholipid concentration.

Ignoring for the moment the discontinuity in the slope at higher concen-
trations, we can try to estimate the lysophospholipid surface excess using the
Gibbs adsorption isotherm. Let’s take the n = 14 data, we estimate a change

Ay~42mNm ! —58mNm~! = —-16mNm™!
in the measured surface tension for a change
Alné~In10"¥uM — In10"°uM = 1n10°® = 0.81n10 ~ 1.8

in the log solute concentration. Taking the room temperature value of RT =
2.5kJmol ™!, we can apply the Gibbs adsorption isotherm (equation (59)), ob-
taining
N 1 o = 16 mNm™!
2.5kJmol ™" 1.8

-1
50 A”
' | ———
molecule
Considering the somewhat bulky structure of the hydrophilic head, this concen-

tration corresponds to a more-or-less “shoulder-to-shoulder” packing of surfac-
tant molecules at the interface.

~ 3.6 x 107 molm—2

or

3.2 Micellization

How do we make sense of the observed discontinuity in the slope of the v vs.
In¢ data (figure 1) presented in the previous subsection? A naive application
of the Gibbs adsorption isotherm might lead one to conclude that at lower
surfactant concentrations the surfactant surface I' excess is essentially constant
(as reflected in the roughly linear depedence of v on In ¢ at low concentrations),
but that beyond a certain concentration there is a sudden drastic reduction in
the surface excess, reflected in the abrupt flattening of the « vs. In¢ curves at
higher concentrations.

In fact the breaks in the curves of figure 1 do not reflect a change in the
surface excess but rather reflect a change in the structure of the solute in the
bulk of the solution. The slope discontinuity marks the onset of stable micelle
formation in the bulk:
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Micelles are formed by the coalescence of a large number v > 1 of indi-
vidual surfactant molecules (or monomers, for short). At low bulk surfactant
concentration ¢, micelle formation is unstable in that, in the rare occurence that
a micelle might form, it is quickly broken back up into monomers by thermal
agitation. It is only at sufficiently high surfactant concentrations where micelle
formation, which requires the many monomers to “find one another”, is suffi-
ciently frequent to compensate their short lifetime and produce an appreciable
bulk concentration relative to that of the monomer concentration. In fact one
often observes with increasing surfactant concentration a transition of the ap-
pearance of the fluid from clear to cloudy/milky. This transition coincides with
the discontinuity in the v vs. Inc slope, and is explained by the size of the
micelles, whose dimensions are comparable to that of the wavelength of visible
light, making them much more efficient in scattering light.

In what follows we attempt a more rigorous analysis of the qualitative de-
scription of micelle formation given in the previous paragraph. We start by
formalizing micelle formation as the following chemical reaction

vm<— M (64)

i.e. a transformation between v monomers m and a single micelle M. From
the law of mass action® we have the following equation relating the monomer
concentration ¢ and the micelle concentration ¢’:

c’ AG°
— = exp < RT ) (65)

where AGP? is the change in the solution’s “Gibbs free energy” G = U—-TS+ PV
in forming one mole of micelles when the monomer and micelle concentrations
are both 1 molar.

From the mass action equation we can immediately make a couple observa-
tions. First, at very low monomer concentrations there will be essentailly no

6The mass action equation can be derived from the second law of thermodynamics applied
to dilute solutions. See, e.g., chapter 7 §27 of Enrico Fermi’s text Thermodynamics (ISBN-13
978-0-486-60361-2).
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micelles:

AG° v
¢ exp (——RT ) < _AG" w1
c c P RT ¢ c—0 0 (66)

since we assume v > 1. By similar reasoning, at high concentrations the micelles
will dominate over the monomers. In fact, one can show that in the limit
¢ = c+vc — oo where the total surfactant concentration ¢ becomes very large,
the effect of doubling ¢ is to only increase the monomer concentration by a
factor 1/2"*1 ie. Alnc/Alnc~1/v.

We can now explain the flattening of the « vs. Iné¢ curve. What is being
represented in figure 1 is a measurement of the surface tension as the total
surfactant concentation ¢ = c+vc’ is being increased. However, since we assume
that it is the monomer species that is populating the interface, for application
of the Gibbs isotherm we are only interested in the monomer concentration c.
Now at low concentrations this is no issue since in this limit we have ¢ ~ ¢, and
SO

A A
T ~ 27 — _RrT (67)
Alnc/ |,,, Alnc
At high concentrations however we have 22< ~ v~! so that, if we assume the

Alnec
surface excess I' is the same at high monomer concentrations as it is at low

monomer concentrations, on applying the Gibbs adsorption isotherm we have

A 1 A 1 A
i ~-27 - Rrrpwa - (22 (68)
Alné v 50

vAlnc Alnc
or in other words we expect a factor v > 1 reduction in the slope of the experi-
mental v vs. In¢ data in going from low concentrations to high concentrations,
as is observed.

C—00

3.3 Critical micelle concentration

Now we still have two lingering questions to answer:

e At what concentration ¢cpsc, called the critical micelle concentration or
CMC, do we expect to observe the onset of micellization?

e Why is the change in the v vs. Inc slope discontinuous, i.e. we is the
transition from a monomer-dominated solution to a micelle-dominated
solution so abrubt?

We attack the first question first. Let’s define the onset of micellization to be
the point at which a single surfactant molecule added into solution is just as
likely to become part of a micelle as it is to exist as a monomer. That is, we
want to know at what surfactant concentration ¢ does the “micelle occupation
probability” (let’s call it ) becomes 50%, i.e. when does an increase in the
total surfacant concentration by some small amount €, i.e. ¢ — ¢+ € result in
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the following change in the monomer and micelle concentrations ¢ and ¢’

c—c+e(l—x)

| (69)
¢ —C + —ex
v

where the micelle occupation probability x is equal to 1/2. From the mass action
equation we have

(c+e(1—2))" o &

We leave it as an exercise to the reader to show that, in the limit € — 0, this
equation is satisfied when
-1
1 c
r=|1+—— 71
( + V2 c’) (71)

so that when x = 1/2 we have

c=v% (72)
In other words the onset of micellization occurs when one out of every v surfac-
tant molecules is part of a micelle”. At these concentrations we have

v v

o _ C _ C .2 v—-1 .2 v
exp(AG /RT)_?_W_VC ~ UV C (73)
We have for the critical micelle concentration
1 1
Inéope ®Ilne=—-2lnv+ —AG°/RT ~ —AG°/RT (74)
v v

where in the first step is justified by noting that since ¢/ = ¢/v? at the onset of
micellization and v > 1 we therefore have ¢oprc = ¢, and in the final step we
assume AG° > vRT. The above equation demonstrates that the information
about the energetics of micellization, namely the reaction energy AG°, which
occurs in the bulk of a solution, can be determined via measurements of the
properties associated to the interface between the solution and the gas phase,
namely the surface tension «y. See section 11.2.3 of PCI (2013 edition) for an
interesting discussion of solvent-surfactant interactions and their influence on
the energetic and entropic effects affecting micellization.

3.4 Micellization phase transition

It remains thus to explain the abruptness of the onset of micellization, i.e. the
discontinuity of the measured = vs. ¢ slope. Now at low concentrations, any
surfactant molecule added to the solution will exist in solution as a monomer,

"We assume throughout that the interfacial surface area A is small enough that only a
negligible quantity of surfactant molecules populate the interface.
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and at high concentrations any molecule added will become part of one of the
many micelles. At the CMC, an added molecule is just as likely to exist as
a monomer or become part of a micelle. Apparently this “micelle occupation
probability” x, defined in equation (69), transitions abruptly from 0% to 100%
as the surfactant concentration goes from below the CMC to above the CMC.

Let’s look at how z changes with a small increase ¢ — (1+4¢€)c in the
monomer near the CMC. Since ¢ = ¢/v? and z = 1/2 at the CMC, then
when ¢ — (1 + €) ¢ we have

d =+ A =c/vP+ A =c/v? + Ac/v = ¢/v? +ec/v (75)

Plugging these values into equation (71) and solving for z = 1/2 + Az in the
limit € — 0 we find (after some algebra):

A 1
A{:Z(V_nw/zx (76)
Which is precisely what we sought to demonstrate, i.e. that the micelle occu-
pation probability x changes abruptly with changes in surfactant concentration
to the extent that the micelles are large, i.e. to the extent that v > 1.
Using numerical techniques one can compute = for an arbitrary concentra-
tion. In the following plot we do so for micelles of varying size v:

X versus concentration

x 10°
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b= : h
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3 8
o

51074 — 32
= — 128

10°
total monomer concentration ¢ + vc’, units of ccuc

The simulation results are consistent with the hypothesis that the abruptness
of the onset of micellization is a result of the large micelle size. If one assumes
a small micelle (e.g. v = 2), one gets a very gradual transition in x, while for
large micelles (e.g. v = 128) z transitions from = < 5% to  ~ 50% from just a
factor two increase in the total surfactant concentration.

Just how large are micelles in reality? Below we show the estimated monomer
size v ~ Npoder vs. alkyl chain length for different surfactant molecules:
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The monomer sizes are estimated from x-ray scattering measurements (see
article for details). Is the roughly linear increase in micelle size v with alkyl
chain length in keeping with your intuitive expectations?
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