
CH-242(b) - Part 1

Lecture 3 - Interfacial Electrochemistry

Resources:

• Butt et al., Physics and Chemistry of Interfaces, 3rd (2013) edition, chap-
ter 4

Summary

• Electrocapillarity

– The surface tension of an interface depends on the electric potential
difference across the interface.

– For a polarizable interface, the surface charge density σ at the in-
terface is related to the applied voltage V and the surface tension
by:

σ =
dγ

dV
(Lippmann’s equation)

– The differential capacitance cA of the interface can be calculated
using the equation

cA = − d2γ

dV 2

• Specific adsorption

– In general at zero applied voltage there will be a preferential binding
to a polarizable metal/aqueous interface of some ions over others.

– The voltage Vpzc is defined to be the voltage required to establish an
electrically neutral interface (σ = 0). For mercury/aqueous interfaces
this corresponds to the peak of the associated electrocapillary curve
measuring capillary rise/fall as a function of applied voltage.

– Vpzc depends on the species of cations and anions in solution. Because
anions typically bind more strongly to metal/aqueous interfaces, Vpzc

is typically positive.

• The diffuse layer and Debye screening
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– Mobile charge carries in solution will redistribute themselves in a
“diffuse layer” of thickness λD (Debye length) at the interface, where

λD =

√
εRT

2coF 2

– Inside the diffuse layer, there is a nonzero charge density which acts to
“screen” (or block) out the electric field produced by any net surface
charge at the interface.

– The differential capacitance cA of the diffuse layer is ε/λD.

• Nonpolarizable interfaces

– For nonpolarizable interfaces there is a mechanism for charge transfer
across the interface.

– As a result, the interfacial electric potential and the concentrations
of ionic species in solution are inter-dependent.

– For the AgI electrode we have the following equation relating the
concentration of Ag+ ions and the interfacial potential:

[Ag+] = [Ag+]pzce
F∆ϕ
RT (Nernst equation)

1 Electocapillarity

1.1 Lippmann’s experiment

Franco-Luxembourgish physicist Gabriel Lippmann (1845-1921) performed the
first experiments exploring the relationship between electricity and surface ten-
sion. Below are a couple excerpts from the introduction of an article announcing
his first discoveries in “electrocapillarity”:

Below is Lippmann’s illustration of the apparatus used in his seminal exper-
iments. I’ve colored the diagram to help identify the different elements:

2



The central component of the apparatus is located at point “M” where one
finds a mercury-water meniscus formed in a narrow glass capillary.

Question: What is the approximate inner radius r of the capillary at the point
M? Take the height difference ∆h ≡ hA−hM between the mercury liquid level
at A and the meniscus M to be ∆h ≈ +14.0mm, and assume the meniscus is at
the same height as the water liquid level at B. Assume, as Lippmann does, that
the mercury-water meniscus M has contact angle of θ = 0◦. Lippmann in fact
adds some sulfuric acid to the water in order to enhance the “wettability” of
the water with the walls of the glass capillary and ensure that the contact angle
θ = 0◦ condition is met. The surface tension γ of the mercury-water interface
is 415mNm−1.

Answer: The pressure PHg on the mercury side of the meniscus M is Po +
ρHgg∆h where:

• Po is the pressure at the gas-mercury interace at A and is simply equal to
the atmospheric pressure in the laboratory,

• ρHg is the density of liquid mercury, and

• g is the acceleration due to gravity.
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The pressure on the water side of the meniscus is simply Po since the meniscus
is at the same height as the water liquid level at B. Therefore the pressure
difference ∆P across the interface is just ρHgg∆h, which by the Young-Laplace
equation (lecture 1) is equal to 2γ

R , where R is the radius curvature of the
meniscus. The contact angle θ = 0◦ condition is equivalent to the assertion that
the radius of curvature R is equal to the capillary radius r. Thus we have

r = 2γ / ρHgg∆h

There is in fact a unit of pressure called mmHg which is defined to be the
pressure difference between two points in a mercury column that are separated
by 1mm in height. We have 1mmHg ≈ 133Pa. Therefore numerically we have

r = 2× 415× 10−3 Nm−1 /
(
133PammHg−1 × 14.0mmHg

)
≈ 0.44mm

which is quite close to Lippmann’s estimate of 0.32mm.

Lippmann inserts into the mercury volume at K ′ an electrical lead (labeled
α) and inserts into the mercury volume below the water reservoir at B another
electrical lead labeled β. Connected between the leads α and β is a 1.1V copper
/ zinc “Daniell cell” battery, with the positive end of the battery connected to β.
With the electrical switch S disconnected from the battery Lippmann observes
the capillary drop ∆h ≈ 14.0mm. Remarkably, when he connects the switch S
to the battery he observes an additional 4.9mm drop of the meniscus elevation
so that we now have ∆h = 18.9mm. Applying a voltage across the interface
appears to have the effect of modifying the interfacial surface tension!

1.2 Aside: contact potentials

Before continuing with the more mathematical analysis of this “electrocapillary”
effect, you may be wondering why Lippmann bothers to include a mercury vol-
ume at the bottom of the water reservoir at B, and why he connects his electrical
lead β to this volume instead of just putting β directly in contact with the water.
The reason is that there will in general exist a voltage drop, called a “contact
potential”, at the electrical interface (or “junction”) of unlike materials. The
origin of this phenomenom can be understood from thermodynamical considera-
tions: if the chemical potentials (see lecture 2) for electrons of the two materials
composing the junction are different, then electrons will leave the material of
high chemical potential and go to the material of lower chemical potential until
the coulomb repulsion due to accumulation of negative charge in the low chem-
ical potential material prevents the flow of further charge∗. The flow of charge
results in a difference in electric potential between the two materials which we
call the contact potential.

The value of this contact potential depends on many factors, including the
temperature, pressure, and the composition of the materials composing the

∗When this occurs, we say that the difference in “electro-chemical potential” of the two
materials is zero.
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junction†. Contact potentials are difficult to measure, so that if one merely
inserts lead β directly into the water then, even though there may be a well-
defined 1.1V potential difference between the leads α and β with the switch S
connected to the battery, the potential difference across mercury-water interface
will be unknown because of the unknown contact potential drops at the junctions
between the lead α and the mercury and the lead β and the water. This can be
seen by looking at the following simplified electrical diagram:

The voltage drop across the meniscus (represented by the capacitance c(W−
Hg)) is not 1.1V but rather 1.1V + V (β −W)− V (α−Hg) where

• V (β −W) is the contact potential across the junction between the lead β
and the liquid water (W ) and

• V (α − Hg) is likewise the contact potential across the junction between
the lead α and the liquid mercury (Hg).

Lippmann’s actual experimental arrangement is however represented by the
following electrical diagram:

Now the voltage drops created by the contact potentials at the junctions
α − Hg and β − Hg are equal and opposite (we presume the electrical leads

†The temperature dependence of the contact potential is the operating principle of a
thermocouple, which is a type of thermoometer.
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are made of the same material), so that their effects cancel. We do now have
however another large mercury-water interface at the water reservoir B, which
we respresent by a capacitance C(Hg−W), so that the voltage drop ∆v across
the meniscus will be 1.1V minus the voltage drop ∆V across C(Hg −W).

However, for two capacitors in series we have that the charge Q across one
capacitor is equal to that of the other. Therefore, from the basic relationship
V = Q/C where

• C is the capacitor’s capacitance,

• Q is the charge across the capacitor, and

• V is the voltage drop across the capacitor

we have that the voltage drop ∆V over the large mercury-water interface is much
smaller than the drop ∆v across the meniscus to the extent that capacitance is
proportional to surface area and the surface area of the former is much larger
than that of the latter (i.e. the r ≈ 300 µm meniscus). Therefore to a very good
approximation we can say that the voltage drop across the meniscus (with the
switch S connected to the battery) is simply equal to that of the 1.1V battery,
independent of whatever might be the contact potential between the mercury
and the electrical contacts.

1.3 The Lippmann equation

We now proceed with a thermodynamical analysis of the charged mercury-water
interface to try understand this increase in surface tension that Lippmann ob-
served upon applying a voltage across the interface. The picture that will be
helpful to keep in your head is that of an electric double layer at the mercury-
aqueous interface:

where, depending on the difference in the electric potential ϕ on each side of
the interface we will have varying amount of electric charge (represented by a
surface charge density σ) accumulating at the interface.
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We begin the analysis by quoting equation (59) from the typed lecture 2
notes:

dγ = −ΓdµS (1)

where γ is the surface tension, Γ is surface excess of a solute, and µS is the
chemical potential of the ionic solute species at the interface. We generalize
this equation in two respects. First we enlarge the equation to include several
species: nHg species from the liquid mercury and nAq species coming from the
aqueous side:

dγ = −
nHg∑
i=1

ΓHg
i d

(
µHg
i

)S
−

nAq∑
j=1

ΓAq
j d

(
µAq
j

)S
(2)

The species coming from the mercury side would include negatively charged
conduction electrons or postively charged “holes” (i.e. mercury atoms missing
a valence electron), while the species in the aqueous side could include any
ionic species existing in solution. For Lippmann’s solution we would include
among the aqueous ionic species the HSO4

– hydrogen sulfate anion or H3O
+

hydronium cation coming from the sulfuric acid added to increase the solution’s
wettability.

Second, we generalize µ to now represent the electrochemical potential of
its associated species. The electrochemical potential µ can, somewhat loosely
speaking, be decomposed into two parts µ = µo + qϕ where:

• µo is the “chemical” part equal to the electrochemical potential of the
species at zero electric potential, and

• qϕ is the “electric” part, where q is the electric charge of one mole of
the species and ϕ is the value of the electric potential in the medium.
We recall from introductory electromagnestism that the electric potential
ϕ(x) is a function defined over a region of space. This function defines the
force F = qE exerted on a particle of charge q by the surrounding charges
via the relation E = −∇ϕ. The mediums we consider are electrically
conductive so that the electric potential is constant throughout a given
medium.

At equilibrium the electrochemical potentials of both the mercury- and
aqueous-phase species must be equal to the values in their respective bulk
phases. Therefore in equilibrium we have

dγ = −
nHg∑
i=1

ΓHg
i dµHg

i −
nAq∑
j=1

ΓAq
j dµAq

j (3)

where we have dropped the superscript S to indicate that we refer now to the
bulk phase electrochemical potentials. If we assume that no changes occur in
the chemical part µo of the electrochemical potentials, then we have dµ = qdϕ
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so that

dγ = −

(
nHg∑
i=1

qHg
i ΓHg

)
dϕHg −

nAq∑
j=1

qAq
j ΓAq

 dϕAq (4)

Now molar charge q (charge per mole) times surface excess Γ (moles per unit
area) is simply surface charge density σ (charge per unit area) so we have

dγ = −

(
nHg∑
i=1

σHg
i

)
dϕHg −

nAq∑
j=1

σAq
j

 dϕAq (5)

which, setting
∑nHg

i=1 σ
Hg
i ≡ σHg and

∑nAq

j=1 σ
Aq
j ≡ σAq yields

dγ = −
(
σHgdϕHg + σAqdϕAq

)
(6)

We now argue that σHg must be equal and opposite to σAq. This requirement
of “electroneutrality” derives from the fact that, though the interface is not
necessarily electrically conductive, the individual media are, so that inside either
the mercury or aqueous phases we require that the electric field equal zero. We
omit here the rigorous demonstration, using Gauss’ law, that the condition of
zero electric field outside the interface necessarily implies a perfect cancellation
of charge at the interface, and simply assert

σHg = −σAq ≡ σ (7)

Therefore from (6) we have

dγ = σd
(
ϕAq − ϕHg

)
(8)

Now ϕAq − ϕHg = ϕβ − ϕα is exactly the external voltage V applied by the
experimenter‡. Making this substitution we obtain the Lippmann equation

dγ

dV
= σ (9)

From the Lippmann equation we obtain directly an expression for the “differ-
ential interfacial capacitance” cA:

cA ≡ −
dσ

dV
= − d2γ

dV 2
(10)

which has units of capacitance per unit area. The negative sign is necessary to
ensure that a positive differential capacitance corresponds to an increase in the
metallic phase charge density σ when the electric potential in the metallic phase
increases relative to the aqueous phase.

In the sections to follow we investigate the consequences of equations (9)
and (10), but before continuing it is helpful to quickly pause and enunciate the
sign conventions employed in these equations:

‡In Lippmann’s original experiment described ealier, the copper cathode is connected to
the electrical lead α and the zinc anode is connected to the electrical lead β. Therefore when
Lippmann opens the connects the switch S to the battery there is a positive voltage V applied
across the meniscus interface as we have defined it.
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• The surface charge denisty σ refers to the surface charge density on the
mercury side of the interface, or more generally to the metallic side of the
interface.

• The polarity of the applied voltage V is such that V is positive if the
potential in the aqueous phase is greater than that of the metallic phase.

2 Surface charging and specific adsorption

When Lippmann connects the switch S to the battery, he effectively increases
V from 0 to 1.1V. The fact that he observes a further drop in the height of the
mensicus upon connecting the switch to the battery implies that an increase in
V results in an increase in surface tension γ. This implies via the Lippmann
equation that, for the acidic solution used by Lippmann, the interfacial charge

density σ = dγ
dV (V = 0) ≈ γ(1.1V)−γ(0V)

1.1V−0V is positive. Since σ refers to the charge
density on the mercury side of the interface, a positive σ implies a decifit of
negatively-charged electrons at the interface, or equivalently we could say there
is a surplus of positively-charged mercury ions (i.e. holes).

Likewise, Lippmann’s observations imply a negative charging of the aque-
ous side of the interface. This implies the existence of an anionic species that
preferentially binds or specifically adsorbs to the interface. Since Lippmann
had added sulfuric acid to increase the wettability of his aqueous solution, this
anion might be the HSO4

– hydrogen sulfate ion, though we would need more
information about the exact composition of the solution to say more.

2.1 Guoy’s experiments and specific adsorption

At the dawn of the twentieth century French physicist L.G. Gouy (1854-1926)
performed a series of experimental investigations on the phenomenom of elec-
trocapillarity. For a wide variety of solutions of widely ranging concentrations
Gouy measured “electrocapillary curves” tracing the dependence of the surface
tension γ of the mercury-aqueous interface on the interfacial potential difference
V . The technique and apparatus used by Gouy are essentially identical to that
used by Chappmann:

Here is an example of a series of electrocapillary curves measured by Gouy
for several potassium salts:
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We have annotated the diagram to highlight certain properties of these
curves that will be of interest to us:

• Horizontal axis: the voltage V applied across the mercury-aqueous in-
terface.

• Vertical axis: the pressure (in cmHg = 10mmHg) that must be applied
to the mercury reservoir in order to keep the meniscus at some fixed height.
This pressure is proportional to the surface tension γ of the mercury-water
interface.

• Peak locations: the voltage Vpzc at which the surface tension reaches a
maximum.

• Peak widths (“largeurs”): the difference λ in voltage at two points of
equal reference surface tension γo.

One major result of Gouy’s investigations that is clear from the above curves is
that, contrary to the conviction of Chappmann, an electrocapillary curve is not
identical from one solution to the next:
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The symbols θ and ∆ used here by Gouy are what we refer respectively as
the surface tension γ and applied voltage V . The next subsection will look at
the slopes dγ

dV of the electrocapillary curves, which by the Lippman equation
(eq. (9)) we know to be equal to the interfacial charge density σ. Following

that we then investigate the physical interpretation of the curvature d2γ
dV 2 of the

curve mentioned in the excerpt above.

2.2 Point of zero charge and specific adsorption

One feature of the electrocapillary curves shown above which stands out is
the relative displacement of the curves from each other. For example, the KI
solution peaks at about 0.6V, while KBr peaks at about 0.3V. At the peak of
a curve we have dγ

dV = 0, which occurs at Vpzc, i.e. the voltage at the “point of
zero charge”. At V = 0 we have for all curves a positive slope, which according
to our convention implies specific adsorption of dissolved anionic species at the
interface. When we increase V we put the aqueous phase at a higher electric
potential than the mercury phase, which has the effect of repelling negatively
charged anions from the interface. Evidently the voltage required to reach σ = 0,
i.e. to reach a state of equal and opposite anion and cationic charge density at
the interface, is greater for the KI solution than for KBr. Since both solutions
share the same potassium K+ cation, the electrocapillary curves seem to suggest
in other words that iodine binds more strongly than bromine to the interface.

We offer the following series of diagrams to help the reader visualize the
charge state of the interface at various applied voltages V :
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With no zero applied voltage, the binding at the interface is determined
purely by chemical affinity, which for iodine is greater than bromine. This
reflected in the steeper γ vs. V slope for KI than KBr, which implies a greater
surface charge density σ. The negative charge from the bound anions repels
free electrons in the mercury, leaving behind an excess of positively charged
Hg+ cations.

In the above diagram we apply a positive voltage V ≈ 0.3V, so that posi-
tive charge appears on the electrode in the aqueous phase and negative charge
appears on the electrode in the mercury. Anions bound at the interface are
attracted to the positive charge and repelled by the negative charge, resulting
in net force acting to pull anions back into the aqueous phase. This force is
strong enough to eliminate any preference for the adsorption of Br– over the
K+ counterion, resulting in an overall charge density σ = 0. The selective ad-
sorption of the more strongly bound I– ions is on the other hand reduced but
not completely eliminated.
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Finally, increasing the voltage to V ≈ 0.6V eliminates any preference for I–

adsorption over K+. The electrical force attracting postively charged ions to
the interface is now strong enough to preferentially adsorb K+ cations, which
in turn attracts free electrons in the mercury phase to the interface. Glancing
back at Gouy’s graph of electrocapillary curves reproduced at the beginning of
the section, we note that at sufficiently positive applied voltages the measured
surface tension is independent of the salt solution, i.e. on the right hand side
the curves all trace over one another. This we can explain by arguing that
at sufficiently positive applied voltages the dense layer of (negatively charged)
electrons on the metallic side of the interface prevent any significant occupation
of anionic species on the aqueous side of the interface. It is thus only the cationic
species which can populate the interface, which, for the curves displayed on the
graph in question, is always the potassium K+ ion. Therefore for these voltages
we expect identical electrocapillary behavior.

According to PCI, the preference for specific adsorption of anionic species
over cationic species is a general one. The trend is observed not only for mercury
but for other metals as well, including gold, platinum, silver, etc. One influence
thought to play a role in this preference is the tendency for cations to form
stronger hydration shells. Binding to the surface would require an ion to “shed”
its hydration shell of water molecules, which for cations is often too expensive
energetically.

3 “Largeur des courbes” and solute concentra-
tion

In addition to the peak location, Gouy also studied the voltage difference (“largeur”)
λ between two points of equal surface tension γo (see e.g. the annotated diagram
above). He tabulates the results for potassium nitrate (KNO3) solutions for a
series of different concentrations in the excerpt below:
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Inspection of the table shows a systematic decrease in the largeur λ with
increasing KNO3 (“KAzNO3”) concentration. This trend was found to hold in
general for the wide array of solutions Gouy investigated. What is the physical
interpretation of this observation? In general, near the peak of a curve the
surface tension has the following dependence on the applied voltage:

γ(V ) ≈ γ(Vpzc) +
1

2

d2γ

dV 2
(Vpzc)× (V − Vpzc)

2
(11)

This comes from a taylor expansion of the function γ(V ), taking into account
that at the peak, i.e. at V = Vpzc, we have dγ

dV = 0. If we take into account
that γ (Vpzc) is found to be mostly independent of concentration, then the pri-
mary influence of changing the solute concentration is apparently to modify the

curve’s curvature d2γ
dV 2 (Vpzc). We illustrate this in the following diagram, which

qualitatively illustrates the electrocapillary curves tabulated in the table above:
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The diagram illustrates that a smaller largeur λ corresponds to a higher

absolute curvature | d
2γ

dV 2 (Vpzc) |, and that these curves have a negative curvature.

But we also have from equation (10) that the differential capacitance cA is − d2γ
dV 2 .

So increasing the solute concentration appears to increase the capacitance of the
electric double layer at the metal-aqueous interface. To explain this correlation
(among others), Gouy along with English chemist D. L. Chapman (1869-1958)
worked out the theory of the diffuse layer at the interface, which we will treat
in the following section.

4 Diffuse electric double layer and Debye screen-
ing
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4.1 Qualitative description

The Gouy-Chapman theory of the electric double-layer in essence describes an
interplay between two complimentary driving forces:

• Energy : Coulombic forces (unlike charges attract, like charges repel) tend
to concentrate charged particles at regions of low potential energy.

• Entropy : At high temperatures particles tend to diffuse or disperse – there
is a pseudo “entropic force” acting to encourage a uniform distribution of
particles.

The physical result of the theory is the following: in addition to a possible
layer of specifically adsorbed ions located at the interface, there is a diffuse layer
of thickness λD

∗ existing just outside the interface in the aqueous phase where
there is an imbalance of negative and positive ions which decreases gradually as
one gets further from the interface. The following diagram attempts to illustrate
what a diffuse aqueous layer might resemble in response to the application of a
positive voltage V which produces layer of negative charge on the metallic side:

In the diagram, c+ and c− represent respectively the concentration of pos-
itively and negatively charged ions in the aqueous phase as a function of the
distance z from the interface. For the moment we assume for simplicity that the
solute is a fully-dissolved monovalent salt (e.g. NaCl) so that there is a single
cation and single anion species of charge +e and −e respectively. In this case
the net electric charge density ρ is proportional to the difference c+ − c− of the
cation and anion concentrations. In response to the layer of negative charge on
the metallic side of the interface, there is attracted to the interface a surplus
∆c of positive ions that act to “screen” or block this negative charge, and at
distances z ≫ λD sufficiently far from the surface the concentrations approach
their bulk value co.

∗Not to be confused with Gouy’s “largeur” symbol λ from section 3.
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4.2 The Debye length

For mathematical convenience we restrict consideration to small applied voltages
so that the maximum concentration difference ∆c is much smaller than the bulk
concentration co. In this case the thickness of the diffuse layer λD is equal to
the “Debye length”†, given by

λD =

√
εRT

2coF 2
(12)

where:

• ε is the permittivity of the aqueous medium. Attraction/repulsion be-
tween mobile charges is modified in dielectric materials (like water) so
that the constant εo in the Coulomb force law F = q1q2

4πεor2
is replaced by

the permittivity ε characteristic of the medium. Therefore in mediums of
high permittivity the force of attraction/repulsion between mobile charges
is reduced.

• R is the universal gas constant.

• T is the absolute temperature of the aqueous medium.

• co is the bulk molar concentration of the salt.

• F = eNA is the Faraday constant‡, where e is the unit of elementary
charge and NA is Avogadro’s number.

For solutions not merely consisting of a single monovalent salt we have the more
general expression

λD =

√
εRT

F 2
∑

n c
o
nZ

2
n

(13)

where con is the bulk concentration of the nth ionic species of valency Zn.
Plugging in the values for the various constants for a monovalent salt dis-

solved in water at room temperature, we have

λD ≈
3 Å
√
co

(14)

where co is the salt concentration in units of mol L−1. Before beginning a math-
ematical derivation of expression (12) for the Debye length, we take a qualitative
look at this expression and analyze how the result is consistent with our picture
enuncianted earlier of a balance between the energetic force of electric attrac-
tion/repulsion and the entropic force of diffusion:

†Named after American physicist Peter Debye (1884-1966).
‡Named after English scientist Michael Faraday (1791-1867).
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• A large value for the permittivity ε means a weaker attraction/repulsion
between mobile charges. Ions are therefore less driven to concentrate
themselves in regions of low electric potential energy, resulting in a broader
Debye length.

• A larger temperature increases the entropic force which discourages large
gradients in concentration, which also leads to a thicker diffuse layer.

• A larger concentration co of mobile charges improves the electrolyte’s abil-
ity to screen the charge layer present on the metallic side of the interface,
leading to a thinner diffuse layer.

Qualitatively we thus see that the depedence of the thickness λD of the diffuse
layer on the different properties of the solution reflects this interplay between
an electric driving force and a thermodynamic driving force acting respectively
to shrink and expand the diffuse layer.

4.3 Gouy-Chapman theory

In this subsection we offer a mathematical derivation of the expression (12) for
the Debye length. We continue for simplicity to assume that we are dealing
with a monovalent salt. We begin with the expression for the electrochemical
potentials µ+(z) and µ−(z) for the cationic and anionic species at a distance z
from the interface:

µ±(z) = µo
± +RT ln c±(z)± Fϕ(z) (15)

The first two terms comprise the “chemical” part of the electrochemical poten-
tial, while the third term, which depends on the electric potetial ϕ(z) is the
“electrical” part. Contrary to our approach in our derivation of the Lippmann
equation (equation (9)), we explicitly take in account the dependence of the
chemical potential on the local concentration c±(z) of particles via the second
term, which is, strictly speaking, accurate only in the limit of low solute con-
centrations∗. The first term is a simple constant, independent of z.

The electric potential ϕ(z) profile is not independent of the concentration
profiles c±(z). By definition, the electric potential ϕ is related to the electric
field E via

E = −∇ϕ (16)

We assume a flat interface†, so that ϕ does not depend on the coordinates x and
y, so that

Ex = Ey = 0 (17)

Ez(z) = −
dϕ

dz
(z) (18)

∗See brief discussion in section 2.3 of the lecture 2 notes.
†Or, more precisely, we assume the interface’s radius of curvature is much larger than the

Debye length λD
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Gauss’ law in turn relates changes in electric field to the local electric charge
density. In its differential form in “homogeneous media”, i.e. in materials of
constant permittivity ε, it reads

∇ ·E =
ρ

ε
(19)

where ρ is the charge density. This specializes for flat interfaces to

dEz

dz
(z) =

ρ(z)

ε
(20)

The charge density ρ(z) in the aqueous phase is determined by the ion concen-
trations c±(z). For monovalent salts we simply have

ρ(z) = F (c+(z)− c−(z)) ≡ F∆c(z) (21)

so that, from the preceding equations we have

d2ϕ

dz2
= −F

ε
∆c(z) (22)

We now turn to the term ln c±(z) appearing in equation (15). We define
∆c±(z) so that c±(z) = co+∆c±(z), where co is still the bulk salt concentration
(i.e. co = c±(z → ∞)). Assuming |∆c±| ≪ co and recalling ln (1 + x) = x as
x→ 0, we have

ln c±(z) = ln (co +∆c±(z))

= ln

(
co

(
1 +

∆c±(z)

co

))
= ln co + ln

(
1 +

∆c±(z)

co

)
≈ ln co +

∆c±(z)

co

(23)

From here we take the difference µ+(z)−µ−(z) ≡ ∆µ(z), obtaining (after some
algebra)

∆µ(z) = µo
+ − µo

− +RT
∆c(z)

co
+ 2Fϕ(z) (24)

Taking the second derivative of the previous equation yields

d2

dz2
∆µ(z) =

RT

co

d2

dz2
∆c(z) + 2F

d2

dz2
ϕ(z) (25)

Which by equation (22) becomes

d2

dz2
∆µ(z) =

RT

co

d2

dz2
∆c(z)− 2

F 2

ε
∆c(z) (26)
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Now in thermodynamic equilibrium the electrochemical potentials µ±(z) of both
species must be equal throughout, and must therefore be indepedent of z. This

in turn implies that d2

dz2∆µ(z) = 0, which upon plugging into equation (26)
yields the linearized Poisson-Boltzmann equation‡

d2

dz2
∆c(z) =

2F 2co
εRT

∆c(z) = λ−2
D ∆c(z) (27)

This differential equation has for solutions the linear combination

∆c(z) = ∆c+e
+ z

λD +∆c−e
− z

λD (28)

for arbitrary constants ∆c±. Our boundary condition c±(z) → co as z → ∞
however imposes the requirement ∆c+ = 0 so that we have finally for our
solution

∆c(z) = ∆coe
− z

λD (29)

Where ∆co is some constant representing the concentration difference at z = 0.
Note also that from equation (22) we have for the electric potential

d2ϕ

dz2
∝ ∆c ∝ e

− z
λD (30)

since the aqueous fluid is conductive the electric field Ez ∝ dϕ
dz must vanish at

z → ∞ where ρ → 0. Since the potential is defined by equation (16) we are
also free to fix the potential at a given point so we therefore choose ϕ → 0 as
z → ∞. The general solution for the electric potential in the aqueous medium
consistent with equation (30) and the boundary conditions just enunciated is

ϕ(z) = ∆ϕe
− z

λD (31)

where from equation (22) we have

∆ϕ = −Fλ2
D∆co
ε

(32)

4.4 Capacitance of diffuse layer

Let us model the interface as a capacitor with a surface charge density σ and
−σ on the metallic and aqueous sides of the interface respectively. The surface

‡Named after French mathematician and physicist Siméon Denis Poisson (1781-1840) and
Austrian physicist Ludwig Boltzmann (1844-1906).
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charge density σ̄ = −σ in the diffuse layer is given by

σ̄ =

∫ ∞

0

dzρ(z)

(eq. 21) =

∫ ∞

0

dzF∆c(z)

(eq. 29) = F∆co

∫ ∞

0

dze(− z

λD
)

= FλD∆co

(eq. 32) = −ε∆ϕ

λD

(33)

so that
σ = −σ̄ =

ε

λD
∆ϕ (34)

If we assume the charge on the metallic side of the interface is confined to a
layer much thinner than the diffuse layer∗, then the potential drop V = ϕ(z →
−∞) − ϕ(z → +∞) across the entire interface is approximately equal to the
drop −∆ϕ going from z = −∞ to z = 0. Taking V = −∆ϕ, the differential
capacitance cA (equation (10)) of the interface is therefore

cA = − dσ

dV
=

ε

λD
(35)

It is instructive to compare the above expression with that of the capacitance
C of a parallel plate capacitor. In this case we have C = εA

d where

• A is the area of the plate electrodes,

• d is the separation between the plates, and

• ε is the permittivity of the dielectric filling the space between the plates.

Therefore we can conveniently interpret the diffuse layer as being effectively a
parallel plate capacitor with plate separation λD.

Finally we are in a position to understand Gouy’s observation of a decreasing
largeur λ of his measured electrocapillary curves with increasing salt concentra-
tion (subsection 3). An increase in the salt concentration co decreases the Debye
length λD which in turn increases the differential capacitance cA which results
in a decreased curve largeur λ.

∗This is a good assumption to the extent that the concentration of mobile charge carriers
in metals (i.e. conduction electrons and holes) typically much higher than the carrier concen-
tration in aqueous solution. In metals there is typically at least one conduction electron and
one hole per atom, while an electrolyte solution that is, e.g., one molar in concentration will
only have one anion or per 1000/18 ≈ 50 water molecules. The Debye length of the diffuse
layer of conduction electrons on the metallic side of the interface is therefore much shorter
than that of the aqueous phase.
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5 Polarizable vs. non-polarizable interfaces

5.1 Polarizable interfaces

The mercury/electrolyte interface discussed at length so far in this lecture is an
example of a polarizable interface. For polarizable interfaces there is no signif-
icant mechanism available for charge transfer across the interface. As a result,
a change in the voltage applied across an interface is reflected in the potential
difference across the interface. For nonpolarizable interfaces the situation is
qualitatively different.

An analogy in terms of an electrical circuit is helpful. Take a polarizable
interface, where we assume for simplicity that the surface charge density σ at
the interface is zero when the applied voltage is zero, i.e. Vpzc = 0. We can
then model the response of the interface to a change in applied potential by the
following circuit analogy. If the applied voltage is zero, then in steady-state the
interface is uncharged there is no flow of charge (i.e. no current) anywhere in
the system:

If we flip the switch, there is now an electromotive force pushing cations to-
wards the interface on the aqueous side, which attracts electrons on the metallic
side:

The symbol R here represents the resistance to flow of electric charge. Note
that for a polarizable interface the effective resistance across the interface is
infinite, since there is no mechanism for charge transfer. As time goes on, more

22



and more chargeQ accumulates at the interface, which reduces the electromotive

force V −Q
C which drives the current I =

(
V − Q

C

)
/R that charges the interface.

As t→∞, Q
C → V so that there is no more current I to further charge the

interface:

5.2 Non-polarizable interfaces

As you might have guessed, a non-polarizable interface is one where charge trans-
fer is permitted by some mechanism. We now say that there is a finite electrical
conductance across the interface, which in terms of our qualitative electrical
circuit analogy implies some non-infinite resistance across the interface:

As an example, suppose we have in our aqueous solution the redox pair
Fe2

+ and Fe3
+, so that the following chemical reaction can take place at a

water/mercury interface:

(36)

When this reaction proceeds from left to right, we end up with the net charge
transfer of −e from the mercury phase to the aqueous phase, and vice versa.
Intuitively we expect that an increase in the applied potential V = ϕAq − ϕHg

will act to encourage the transfer of electrons from the mercury phase of lower
electric potential to the aqueous phase of higher electric potential, i.e. the
reaction in figure 36 should shift towards left-to-right. Indeed this is what our
qualitative electrical circuit analogy suggests:
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The above diagram illustrates the non-polarizability of an interface across
which charge transfer is permitted. An applied voltage of V is not reflected
in a voltage drop V across the interface, even as t → ∞. There is a non-
zero electromotive force V − Q/C leading to a continous current I across the
interface which depends on the mobility of ions in solution (R1) and the kinetics
of the oxidation reaction (R2). Of course if all of the Fe3

+ in solution becomes
oxidized, the oxidation reaction comes to a halt (i.e. R2 →∞) and the interface
becomes effectively polarizable.

In the next section we analyze the non-polarizable interface in a more precise
mathematical context, using the silver iodide (AgI) electrode as an example. We
will make more clear the ideas discussed qualitatively in this subsection and in
the process derive the Nernst equation relating electrode potentials to reactant
concentrations.

6 The AgI electrode and the Nernst equation

Consider the silver iodide (AgI) crystal, which at room temperature takes the
following wurtzite structure:
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Silver iodide is partially soluble in water, so that the following reaction

AgI(solid) ←→ Ag(Aq)
+ + I(Aq)

− (37)

is characterized by the solubility product

[Ag+(Aq)][I
−
(Aq)] ≈ 10−16M2 (38)

Since the simultaneous dissociation of silver cation and iodine anion produces
no net charge transfer from the solid AgI electrode to the aqueous solution, this
solubility product is independent of any voltage difference V between the two
phases.

It is however also possible that only one of the ions, say Ag+, dissolves into
solution†:

Ag(solid)
+ ←→ Ag(Aq)

+ (39)

This reaction of course does lead to a transfer of charge across the interface.
As we have done many times already in this course, we analyse the conditions
under which chemical equilibrium‡ is established. This occurs when the electro-
chemical potentials of the Ag+ and I– species are constant across the interface,
i.e. when

µsolid
Ag+ = µliquid

Ag+ (40)

µsolid
I− = µliquid

I−
(41)

Now in the solid we have

µsolid
Ag+ = µo,s

Ag+ + Fϕs (42)

where

• ϕs is the electric potential in the solid AgI electrode, and

• µo,s
Ag+ is a constant indepedent of the potential.

Similarly, in the liquid phase we have

µliquid
Ag+ = µo,l

Ag+ +RT ln[Ag+] + Fϕl (43)

where µo,l
Ag+ and Fϕl are defined analagously, but in addition we have a term

RT ln[Ag+], valid at low ion concentrations, which depends on the concentration
[Ag+] of Ag+ cations in solution§.

†Iodine dissociation I(solid)− ←→ I(Aq)
− of course being simply the combination of the

other two reactions.
‡Or, rather, electrochemical equilibrium
§There is no analagous term in the solid phase because the Ag+ concentration in AgI,

which is a crystalline solid, is fixed.
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We will find it convenient to define a concentration [Ag+]pzc with the fol-
lowing defining property:

µo,l
Ag+ = µo,s

Ag+ −RT ln[Ag+]pzc (44)

In this case we have

µliquid
Ag+ − µsolid

Ag+ = RT ln
(
[Ag+]/[Ag+]pzc

)
− F∆ϕ (45)

where ∆ϕ ≡ ϕs − ϕl. From the equilibrium condition (40) for the Ag+ cations
we obtain

[Ag+] = [Ag+]pzce
F∆ϕ
RT (46)

The concentration [I−] of iodine anions is incidentally determined by inserting
the above equation into the solubility product (equation 38) and solving for [I−].

Equation (46) is a specific case of what is known as the Nernst equation∗,
which in general describes the relationship between reaction quotients and ox-
idation potentials†. What does the equation tell us? Apparently the potential
drop ∆ϕ across the interface and the concentration [Ag+] of silver cations in
solution are not independently variable. If for instance we apply a positive po-
tential δϕ > 0 across the interface, then the electric potential will be lower in the
liquid phase, attracting Ag+ ions. Vice versa for ∆ϕ = −δϕ < 0. We therefore
expect [Ag+](δϕ) > [Ag+](−δϕ), and indeed from equation (46) we have

[Ag+](+δϕ)

[Ag+](−δϕ)
= e+2Fδϕ

RT > 1 (47)

for δϕ > 0. So the Nernst equation is in line with our intuitive expectations re-
garding the influence of electric potential on concentration of dissolved product.

Incidentally, what is our interpretation of [Ag+]pzc? Indeed at zero applied
voltage (∆ϕ = 0) we apparently have [Ag+] = [Ag+]pzc, but from section 2 we
know that, due of the phenomenon of specific adsorption‡, an applied voltage
of zero does not necessarily imply zero surface charge. Nonetheless, in the
simplified scenario considered here where the only participating charge carriers
in both phases are the [Ag+] and [I−] ions, we can indeed identify the “point of
zero charge” with the Ag+ concentration at which ∆ϕ = 0.

Measurements indicate that [Ag+]pzc ≈ 10−5.5M, so that, for AgI in pure

water where [Ag+] = [I−] ≈
√
10−16M2 = 10−8M we have

∆ϕ =
RT

F
ln
(
10−8/10−5.5

)
≈ −140meV (48)

at T = 300K. The AgI surface will thus be negatively charged, suggesting that
I– ions dissolve into solution less easily that Ag+ ions.

∗Named after German physicist Walter Nernst (1864-1941)
†The curious are referred the supplementary “Electochemistry Primer” document for more

info.
‡As well that of surface dipoles, which we do not discuss.
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What is mathematically expressed by the Nernst equation is a reflection of
the following qualitative description of electrochemical equilibrium at the non-
polarizable interface:

• An interfacial potential difference ∆ϕ acts an incentive or penalty to dis-
sociation or adsorption, depending on the sign of ∆ϕ and the sign of the
charged particle adsorbing or desorbing from the interface.

– An interfacial potential difference ∆ϕ ≡ ϕs−ϕl > 0 will for example
enhance (inhibit) dissociation of positively (negatively) charged ions,
and vice versa for ∆ϕ < 0.

• The rate of adsorption of an ionic species increases with increasing con-
centration of that species in solution§.

• At equilibrium, the rate of adsorption of each ionic species onto the inter-
face is exactly balanced by the corresponding rate of dissociation.

• Therefore, if an ion appears at sufficiently high concentrations∗, then its
rate of adsorption exceeds its rate of dissociation. This net in-flow of
charged particles will alter the interfacial potential difference so that dis-
sociation is enhanced and adsorption is inhibited. This occurs until the
adsorption and desorption rates are equalized, thus establishing equilib-
rium.

• Similarly, if the voltage ∆ϕ applied across the interfacial is sufficiently
high, then the rate of I– dissociation will exceed that of I– adsorption.
The concentration of I– ions in solution will therefore increase until the
rate of adsorption matches the rate of dissociation. The effect will be
exactly the opposite for the Ag+ cations.

The following diagram qualitatively illustrates the influence of the interfacial
potential ∆ϕ = −140meV on adsorption/desorption:

§This can be understood as a simple consequence of statistics: the more ions of a given
species there are in solution, the more frequenctly that ions of that species will strike the
interface, thus the greater chance that an ion adsorbs onto the interface over a given interval
in time.

∗The astute reader may object that, for concentrations [Ag+] or [I−] not equal to the
square root of the solubility product, we will have a non-zero charge density in the bulk of the
aqueous phase due to an imbalance between Ag+ and I– ions. This is indeed true if these are
only ions present in solution. In practice the ion concentrations are manipulated by addition
of salts (e.g. AgNO3). See the example problem at the end of the section.
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Question:
When AgI particles are added to pure water, preferential dissociation of Ag+

cations over I– anions leads to a negative spontaneous charging of the AgI /
aqueous interface, as discussed. Up to what concentration we would need to add
AgNO3 salt to our solution in order to reach a point where the AgI / aqueous
interface is uncharged?
Answer:

AgNO3 dissociates readily in water, so by adding this salt to our solution
up to a concentration of 10−5.5M we increase the concentration of Ag+ ions
from 10−8M to 10−5.5M ≈ [Ag+]pzc so that the AgI particle surfaces become
uncharged. Even though the concentration of Ag+ cations now greatly out-
weighs that of I– anions ([I−] ≈ 10−16M2/10−5.5M = 10−10.5M), the bulk of
the solution is still electrically neutral thanks to the NO3

– counterions.
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